Knowledge discovery process for description of spatially referenced clusters

Spatial clustering is an important field of spatial data mining and knowledge discovery that serves to partition a spatial data set to obtain disjoint subsets with spatial elements that are similar to each other. Existing algorithms can be used to perform three types of cluster analyses, including c...

Descripción completa

Detalles Bibliográficos
Autores principales: Rottoli, Giovanni Daián, Merlino, Hernán Daniel, García Martínez, Ramón
Formato: Documento de conferencia publishedVersion
Lenguaje:Inglés
Inglés
Publicado: 2018
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12272/3323
Aporte de:
id I68-R174-20.500.12272-3323
record_format dspace
institution Universidad Tecnológica Nacional
institution_str I-68
repository_str R-174
collection RIA - Repositorio Institucional Abierto (UTN)
language Inglés
Inglés
topic Knowledge discovery process
Spatial clustering
Regionalization
Decision tree learning
Spatial data mining
spellingShingle Knowledge discovery process
Spatial clustering
Regionalization
Decision tree learning
Spatial data mining
Rottoli, Giovanni Daián
Merlino, Hernán Daniel
García Martínez, Ramón
Knowledge discovery process for description of spatially referenced clusters
topic_facet Knowledge discovery process
Spatial clustering
Regionalization
Decision tree learning
Spatial data mining
description Spatial clustering is an important field of spatial data mining and knowledge discovery that serves to partition a spatial data set to obtain disjoint subsets with spatial elements that are similar to each other. Existing algorithms can be used to perform three types of cluster analyses, including clustering of spatial points, regionalization and point pattern analysis. However, all these existing methods do not provide a description of the discovered spatial clusters, which is useful for decision making in many different fields. This work proposes a knowledge discovery process for the description of spatially referenced clusters that uses decision tree learning algorithms. Two proofs of concept of the proposed process using different spat ial clustering algorithm on real data are also provided.
format Documento de conferencia
publishedVersion
Documento de conferencia
author Rottoli, Giovanni Daián
Merlino, Hernán Daniel
García Martínez, Ramón
author_facet Rottoli, Giovanni Daián
Merlino, Hernán Daniel
García Martínez, Ramón
author_sort Rottoli, Giovanni Daián
title Knowledge discovery process for description of spatially referenced clusters
title_short Knowledge discovery process for description of spatially referenced clusters
title_full Knowledge discovery process for description of spatially referenced clusters
title_fullStr Knowledge discovery process for description of spatially referenced clusters
title_full_unstemmed Knowledge discovery process for description of spatially referenced clusters
title_sort knowledge discovery process for description of spatially referenced clusters
publishDate 2018
url http://hdl.handle.net/20.500.12272/3323
work_keys_str_mv AT rottoligiovannidaian knowledgediscoveryprocessfordescriptionofspatiallyreferencedclusters
AT merlinohernandaniel knowledgediscoveryprocessfordescriptionofspatiallyreferencedclusters
AT garciamartinezramon knowledgediscoveryprocessfordescriptionofspatiallyreferencedclusters
bdutipo_str Repositorios
_version_ 1764820551800455172