Sustainability in the forest supply chain considering the efficient use of residues and byproducts
Supply chain (SC) globally integrates production units with raw material sources and customers, and coordinates all input and output flows (materials, information, finance, etc.) so that the products are produced and distributed in the right amounts, in appropriate locations and at the right time....
Guardado en:
| Autores principales: | , , |
|---|---|
| Formato: | Documento de conferencia acceptedVersion docunento de conferencia |
| Lenguaje: | Inglés Inglés |
| Publicado: |
2018
|
| Materias: | |
| Acceso en línea: | http://hdl.handle.net/20.500.12272/3099 |
| Aporte de: |
| id |
I68-R174-20.500.12272-3099 |
|---|---|
| record_format |
dspace |
| institution |
Universidad Tecnológica Nacional |
| institution_str |
I-68 |
| repository_str |
R-174 |
| collection |
RIA - Repositorio Institucional Abierto (UTN) |
| language |
Inglés Inglés |
| topic |
Cadena de suministros Forest residues and byproducts Supply chain Residuos |
| spellingShingle |
Cadena de suministros Forest residues and byproducts Supply chain Residuos Corsano, Gabriela Campanella, Sandra Montagna, Jorge Marcelo Sustainability in the forest supply chain considering the efficient use of residues and byproducts |
| topic_facet |
Cadena de suministros Forest residues and byproducts Supply chain Residuos |
| description |
Supply chain (SC) globally integrates production units with raw material sources and customers,
and coordinates all input and output flows (materials, information, finance, etc.) so that the products
are produced and distributed in the right amounts, in appropriate locations and at the right time.
These activities involve complex tasks that have different tradeoffs between the involved actors and
require significant effort to coordinate the common actions. In particular, the forest SC has many
heterogeneous participants, therefore, its integration is a challenging issue. One of the main
aspects in the forest industry is the huge amount of generated residues and by-products generating
through the wood mechanical transformation, from the harvest to the final product production. The
residues use has not receive much attention, and its appropriate and efficient use is affected by
many factors, as big involved volume, which increases the transportation cost. Nowadays, residues
are burned in order to avoid its accumulation. This generates smoke, ash and gases impacting the
environment, increasing the greenhouse effect and modifying the landscape. With the aim of
avoiding these drawbacks, in this work a mixed integer linear programming (MILP) model for the
optimal design and planning of the forest SC is proposed. The formulation considers different
production alternatives, with the objective of maximizing the net benefit, generating the sustainable
design of the overall network. This work is developed considering the particular characteristics of
the Argentinean forest industry, but it can be easily adapted for other geographical regions. The
proposed approach represents a useful tool for decision making and analysis of different
production-distribution scenarios of sustainable SCs. |
| format |
Documento de conferencia acceptedVersion docunento de conferencia |
| author |
Corsano, Gabriela Campanella, Sandra Montagna, Jorge Marcelo |
| author_facet |
Corsano, Gabriela Campanella, Sandra Montagna, Jorge Marcelo |
| author_sort |
Corsano, Gabriela |
| title |
Sustainability in the forest supply chain considering the efficient use of residues and byproducts |
| title_short |
Sustainability in the forest supply chain considering the efficient use of residues and byproducts |
| title_full |
Sustainability in the forest supply chain considering the efficient use of residues and byproducts |
| title_fullStr |
Sustainability in the forest supply chain considering the efficient use of residues and byproducts |
| title_full_unstemmed |
Sustainability in the forest supply chain considering the efficient use of residues and byproducts |
| title_sort |
sustainability in the forest supply chain considering the efficient use of residues and byproducts |
| publishDate |
2018 |
| url |
http://hdl.handle.net/20.500.12272/3099 |
| work_keys_str_mv |
AT corsanogabriela sustainabilityintheforestsupplychainconsideringtheefficientuseofresiduesandbyproducts AT campanellasandra sustainabilityintheforestsupplychainconsideringtheefficientuseofresiduesandbyproducts AT montagnajorgemarcelo sustainabilityintheforestsupplychainconsideringtheefficientuseofresiduesandbyproducts AT corsanogabriela sustentabilidaddelacadenasuministroforestalconsiderandoelusoadecuadodesubproductosyresiduos AT campanellasandra sustentabilidaddelacadenasuministroforestalconsiderandoelusoadecuadodesubproductosyresiduos AT montagnajorgemarcelo sustentabilidaddelacadenasuministroforestalconsiderandoelusoadecuadodesubproductosyresiduos |
| _version_ |
1770623465916727296 |
| spelling |
I68-R174-20.500.12272-30992023-06-28T22:46:19Z Sustainability in the forest supply chain considering the efficient use of residues and byproducts Sustentabilidad de la cadena suministro forestal considerando el uso adecuado de subproductos y residuos Corsano, Gabriela Campanella, Sandra Montagna, Jorge Marcelo Cadena de suministros Forest residues and byproducts Supply chain Residuos Supply chain (SC) globally integrates production units with raw material sources and customers, and coordinates all input and output flows (materials, information, finance, etc.) so that the products are produced and distributed in the right amounts, in appropriate locations and at the right time. These activities involve complex tasks that have different tradeoffs between the involved actors and require significant effort to coordinate the common actions. In particular, the forest SC has many heterogeneous participants, therefore, its integration is a challenging issue. One of the main aspects in the forest industry is the huge amount of generated residues and by-products generating through the wood mechanical transformation, from the harvest to the final product production. The residues use has not receive much attention, and its appropriate and efficient use is affected by many factors, as big involved volume, which increases the transportation cost. Nowadays, residues are burned in order to avoid its accumulation. This generates smoke, ash and gases impacting the environment, increasing the greenhouse effect and modifying the landscape. With the aim of avoiding these drawbacks, in this work a mixed integer linear programming (MILP) model for the optimal design and planning of the forest SC is proposed. The formulation considers different production alternatives, with the objective of maximizing the net benefit, generating the sustainable design of the overall network. This work is developed considering the particular characteristics of the Argentinean forest industry, but it can be easily adapted for other geographical regions. The proposed approach represents a useful tool for decision making and analysis of different production-distribution scenarios of sustainable SCs. La cadena de suministro (CS) integra globalmente las unidades productivas con sus fuentes de suministros y sus clientes, y coordina todos los flujos de entrada y salida (materiales, información, finanzas, etc.) de tal manera que los productos sean producidos y distribuidos en las cantidades correctas, en las localizaciones apropiadas y en el tiempo adecuado. Estas tareas implican actividades complejas que presentan diferentes compromisos entre los actores involucrados y requieren de un esfuerzo significativo para coordinar las acciones conjuntas. En particular, la CS forestal, tiene un gran número de participantes que por su heterogeneidad plantean interesantes desafíos de integración. Uno de los aspectos que caracteriza a la industria forestal es la gran cantidad de residuos y subproductos generados en la transformación mecánica de la madera, desde la plantación hasta la obtención de productos finales. El uso de estos residuos no ha recibido demasiada atención, y son muchos los factores que afectan su uso adecuado y eficiente, como los grandes volúmenes involucrados, lo cual encarece su transporte, agravado por las largas distancias que deben recorrer y las instalaciones necesarias para su procesamiento. En la actualidad, estos residuos suelen quemarse para evitar su acumulación. Esto genera humo, cenizas y gases que impactan en el ambiente de manera perjudicial, provocan el incremento del efecto invernadero y modifican el paisaje de la zona en la que se encuentran. Para evitar todos estos inconvenientes y desventajas, en este trabajo se propone desarrollar un modelo de programación matemática mixto entero lineal (MILP, por sus siglas en inglés, Mixed Integer Linear Programming), para el diseño y planeamiento óptimo de la CS forestal. El modelo plantea las diferentes alternativas de producción, con el objetivo de maximizar el beneficio neto, generando el diseño y el planeamiento de la producción, en un marco sustentable mediante la utilización de residuos y subproductos. Este trabajo se desarrolla considerando las características de la industria forestal de Argentina, pero puede ser fácilmente adaptado a otras regiones geográficas. El enfoque propuesto representa una herramienta útil para la toma de decisiones y IX Conferencia Científica Internacional de Medioambiente siglo XXI. Universidad Central de Las Villas. Cuba 2015 Fil: Instituto de Desarrollo y Diseño (INGAR, CONICET-UTN), Santa Fe, Argentin Fil: Facultad de Ingeniería Química (UNL), Santa Fe, Argentina. Peer Reviewed 2018-09-10T16:07:09Z 2018-09-10T16:07:09Z 2015 info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/acceptedVersion docunento de conferencia http://hdl.handle.net/20.500.12272/3099 eng eng Integración de sistemas soporte de decisión para la gestión optima de la cadena de suministros utilizando sistemas empresariales. PID 25/O152 Heinimö J, Malinen H, Ranta T, Faaij A. Renewable energy targets, forest resources, and second-generation biofuels in Finland. Biofuels, Bioprod. Bioref. 2011; 5:238–249 Sipilä E, Jokinen J, Sipilä K, Helynen S, Bioenergy market potential in European forest industry to 2G biofuels and CHP power production by 2020, in Proceedings of the 17th European Biomass Conference and xhibition. June 29–July 3. Hamburg, Germany: ETAFlorence and WIP Renewable Energies 2009: 2084–2092. Joelsson J, Gustavsson L, Pingoud K, Soimakallio S, CO2 balance and oil use reduction of syngas-derived motor fuels co-produced in pulp and paper mills, in Proceedings of the 17th European Biomass Conference and Exhibition. June 29 – July 3. Hamburg, Germany: ETAFlorence and WIP Renewable Energies 2009: 2252–2260 D’Amours S, Rönnqvist M, Weintraub A. Using Operational Research for Supply Chain Planning in the Forest Products Industry. INFOR Inf Syst Oper Res 2009;46:265–281. [5] Mobini M, Sowlati T, Sokhansanj S. A simulation model for the design and analysis of wood pellet supply chains. Appl Energy 2013;111:1239–1249. Gunnarsson H, Rönnqvist M, Lundgren JT. Supply chain modelling of forest fuel. Eur J Oper Res 2004;158:103–123. Beaudoin D, LeBel L, Frayret J-M. Tactical supply chain planning in the forest products industry through optimization and scenario-based analysis. Can J For Res 2007;37:128– 140. Scott F, Venturini F, Aroca G, Conejeros R. Selection of process alternatives for lignocellulosic bioethanol production using a MILP approach. Bioresour Technol 2013;148:525–534. Cambero C, Sowlati T, Marinescu M, Röser D. Strategic optimization of forest residues to bioenergy and biofuel supply chain. Intern J of Energy Res 2015;39;4:439-452. Troncoso JJ, Garrido R a. Forestry production and logistics planning: An analysis using mixed-integer programming. For Policy Econ 2005;7:625–633. Dansereau LP, El-Halwagi M, Mansoornejad B, Stuart P. Framework for margins-based planning: Forest biorefinery case study. Comput Chem Eng 2014;63:34–50. info:eu-repo/semantics/openAccess http://creativecommons.org/publicdomain/zero/1.0/ Autorizo la publicación de la obra a partir de su aprobación/presentación CC0 1.0 Universal application/pdf |