Nonlinear temperature regulation of solar collectors with a fast adaptive polytopic LPV MPC formulation
Temperature control in solar collectors is a nonlinear problem: the dynamics of temperature rise vary according to the fluid flowing through the collector and to the temperature gradient along the collector area. In this way, this work investigates the formulation of a Model Predictive Control (MPC)...
Guardado en:
| Autores principales: | , , , , |
|---|---|
| Formato: | Artículo publisherVersion |
| Lenguaje: | Inglés Inglés |
| Publicado: |
2024
|
| Materias: | |
| Acceso en línea: | http://hdl.handle.net/20.500.12272/11238 |
| Aporte de: |
| id |
I68-R174-20.500.12272-11238 |
|---|---|
| record_format |
dspace |
| spelling |
I68-R174-20.500.12272-112382024-08-05T18:43:57Z Nonlinear temperature regulation of solar collectors with a fast adaptive polytopic LPV MPC formulation Pipino, Hugo Morato, Marcelo M. Bernardi, Emanuel Adam, Eduardo J. Normey-Rico, Julio E. Model predictive control Linear parameter varying systems Quadratic programming problem Tube MPC Solar collector Temperature control in solar collectors is a nonlinear problem: the dynamics of temperature rise vary according to the fluid flowing through the collector and to the temperature gradient along the collector area. In this way, this work investigates the formulation of a Model Predictive Control (MPC) application developed within a Linear Parameter Varying (LPV) formalism, which serves as a model of the solar collector process. The proposed system is an adaptive MPC, developed with terminal set constraints and considering the scheduling polytope of the model. At each instant, two Quadratic Programming (QPs) programs are solved: the first considers a backward horizon of N steps to find a virtual model-process tuning variable that defines the best LTI prediction model, considering the vertices of the polytopic system; then, the second QP uses this LTI model to optimize performances along a forward horizon of N steps. The paper ends with a realistic solar collector simulation results, comparing the proposed MPC to other techniques from the literature (linear MPC and robust tube-MPC). Discussions regarding the results, the design procedure and the computational effort for the three methods are presented. It is shown how the proposed MPC design is able to outrank these other standard methods in terms of reference tracking and disturbance rejection. Fil: Pipino, Hugo A. Universidad Tecnológica Nacional. Facultad Regional San Francisco; Argentina. Fil: Morato, Marcelo M. Universidade Federal de Santa Catarina. Departamento de Automação e Sistemas. Renewable Energy Research Group; Brasil. Fil: Bernardi, Emanuel. Universidad Tecnológica Nacional. Facultad Regional San Francisco; Argentina. Fil: Adam, Eduardo J. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Fil: Normey-Rico, Julio E. Universidade Federal de Santa Catarina. Departamento de Automação e Sistemas. Renewable Energy Research Group; Brasil. Peer Reviewed 2024-08-05T18:43:57Z 2024-08-05T18:43:57Z 2020-09-11 info:eu-repo/semantics/article publisherVersion Solar Energy 0038-092X http://hdl.handle.net/20.500.12272/11238 10.1016/j.solener.2020.09.005 eng eng embargoedAccess http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 Internacional . pdf Internacional Solar Energy 209, 214-225 (2020). |
| institution |
Universidad Tecnológica Nacional |
| institution_str |
I-68 |
| repository_str |
R-174 |
| collection |
RIA - Repositorio Institucional Abierto (UTN) |
| language |
Inglés Inglés |
| topic |
Model predictive control Linear parameter varying systems Quadratic programming problem Tube MPC Solar collector |
| spellingShingle |
Model predictive control Linear parameter varying systems Quadratic programming problem Tube MPC Solar collector Pipino, Hugo Morato, Marcelo M. Bernardi, Emanuel Adam, Eduardo J. Normey-Rico, Julio E. Nonlinear temperature regulation of solar collectors with a fast adaptive polytopic LPV MPC formulation |
| topic_facet |
Model predictive control Linear parameter varying systems Quadratic programming problem Tube MPC Solar collector |
| description |
Temperature control in solar collectors is a nonlinear problem: the dynamics of temperature rise vary according to the fluid flowing through the collector and to the temperature gradient along the collector area. In this way, this work investigates the formulation of a Model Predictive Control (MPC) application developed within a Linear Parameter Varying (LPV) formalism, which serves as a model of the solar collector process. The proposed system is an adaptive MPC, developed with terminal set constraints and considering the scheduling polytope of the model. At each instant, two Quadratic Programming (QPs) programs are solved: the first considers a backward horizon of N steps to find a virtual model-process tuning variable that defines the best LTI prediction model, considering the vertices of the polytopic system; then, the second QP uses this LTI model to optimize performances along a forward horizon of N steps. The paper ends with a realistic solar collector simulation results, comparing the proposed MPC to other techniques from the literature (linear MPC and robust tube-MPC). Discussions regarding the results, the design procedure and the computational effort for the three methods are presented. It is shown how the proposed MPC design is able to outrank these other standard methods in terms of reference tracking and disturbance rejection. |
| format |
Artículo publisherVersion |
| author |
Pipino, Hugo Morato, Marcelo M. Bernardi, Emanuel Adam, Eduardo J. Normey-Rico, Julio E. |
| author_facet |
Pipino, Hugo Morato, Marcelo M. Bernardi, Emanuel Adam, Eduardo J. Normey-Rico, Julio E. |
| author_sort |
Pipino, Hugo |
| title |
Nonlinear temperature regulation of solar collectors with a fast adaptive polytopic LPV MPC formulation |
| title_short |
Nonlinear temperature regulation of solar collectors with a fast adaptive polytopic LPV MPC formulation |
| title_full |
Nonlinear temperature regulation of solar collectors with a fast adaptive polytopic LPV MPC formulation |
| title_fullStr |
Nonlinear temperature regulation of solar collectors with a fast adaptive polytopic LPV MPC formulation |
| title_full_unstemmed |
Nonlinear temperature regulation of solar collectors with a fast adaptive polytopic LPV MPC formulation |
| title_sort |
nonlinear temperature regulation of solar collectors with a fast adaptive polytopic lpv mpc formulation |
| publishDate |
2024 |
| url |
http://hdl.handle.net/20.500.12272/11238 |
| work_keys_str_mv |
AT pipinohugo nonlineartemperatureregulationofsolarcollectorswithafastadaptivepolytopiclpvmpcformulation AT moratomarcelom nonlineartemperatureregulationofsolarcollectorswithafastadaptivepolytopiclpvmpcformulation AT bernardiemanuel nonlineartemperatureregulationofsolarcollectorswithafastadaptivepolytopiclpvmpcformulation AT adameduardoj nonlineartemperatureregulationofsolarcollectorswithafastadaptivepolytopiclpvmpcformulation AT normeyricojulioe nonlineartemperatureregulationofsolarcollectorswithafastadaptivepolytopiclpvmpcformulation |
| _version_ |
1809230384937828352 |