Adaptive Predictive Control for Industrial Processes
In this work a predictive controller formulation is developed within a linear parameter-varying formalism, which serves as a non-linear process model. The proposed strategy is an adaptive Model-based Predictive Controller (MPC), designed with terminal set constraints and considering the scheduling p...
Guardado en:
| Autores principales: | , , , |
|---|---|
| Formato: | Documento de conferencia publisherVersion |
| Lenguaje: | Inglés Inglés |
| Publicado: |
IEEE
2024
|
| Materias: | |
| Acceso en línea: | http://hdl.handle.net/20.500.12272/11235 |
| Aporte de: |
| id |
I68-R174-20.500.12272-11235 |
|---|---|
| record_format |
dspace |
| spelling |
I68-R174-20.500.12272-112352024-08-05T18:38:16Z Adaptive Predictive Control for Industrial Processes Bernardi, Emanuel Pipino, Hugo Cappelletti, Carlos A. Adam, Eduardo J. linear parameter-varying Solar thermal collector Model-based predictive control Non-linear system In this work a predictive controller formulation is developed within a linear parameter-varying formalism, which serves as a non-linear process model. The proposed strategy is an adaptive Model-based Predictive Controller (MPC), designed with terminal set constraints and considering the scheduling polytope of the model. At each sample time, two Quadratic Programming (QP) problems are solved: the first QP considers a backward horizon to find a virtual model-process tuning variable that defines the best LTI prediction model, considering the vertices of the polytopic system; then, the second QP uses this LTI model to optimise performances along a forward horizon. This paper ends with a realistic solar thermal collector process simulation, comparing the proposed MPC to other techniques from the literature. Discussions regarding the results, the design procedure and the computational effort are presented. Fil: Bernardi, Emanuel. Universidad Tecnológica Nacional. Facultad Regional San Francisco; Argentina. Fil: Pipino, Hugo A. Universidad Tecnológica Nacional. Facultad Regional San Francisco; Argentina. Fil: Cappelletti, Carlos A. Universidad Tecnológica Nacional. Facultad Regional Paraná; Argentina. Fil: Adam, Eduardo J. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. 2024-08-05T18:38:16Z 2024-08-05T18:38:16Z 2021-11-05 info:eu-repo/semantics/conferenceObject publisherVersion 2021 XIX Workshop on Information Processing and Control (RPIC) 978-1-6654-1436-4 http://hdl.handle.net/20.500.12272/11235 10.1109/RPIC53795.2021.9648446 eng eng embargoedAccess http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 Internacional . pdf Nacional IEEE |
| institution |
Universidad Tecnológica Nacional |
| institution_str |
I-68 |
| repository_str |
R-174 |
| collection |
RIA - Repositorio Institucional Abierto (UTN) |
| language |
Inglés Inglés |
| topic |
linear parameter-varying Solar thermal collector Model-based predictive control Non-linear system |
| spellingShingle |
linear parameter-varying Solar thermal collector Model-based predictive control Non-linear system Bernardi, Emanuel Pipino, Hugo Cappelletti, Carlos A. Adam, Eduardo J. Adaptive Predictive Control for Industrial Processes |
| topic_facet |
linear parameter-varying Solar thermal collector Model-based predictive control Non-linear system |
| description |
In this work a predictive controller formulation is developed within a linear parameter-varying formalism, which serves as a non-linear process model. The proposed strategy is an adaptive Model-based Predictive Controller (MPC), designed with terminal set constraints and considering the scheduling polytope of the model. At each sample time, two Quadratic Programming (QP) problems are solved: the first QP considers a backward horizon to find a virtual model-process tuning variable that defines the best LTI prediction model, considering the vertices of the polytopic system; then, the second QP uses this LTI model to optimise performances along a forward horizon. This paper ends with a realistic solar thermal collector process simulation, comparing the proposed MPC to other techniques from the literature. Discussions regarding the results, the design procedure and the computational effort are presented. |
| format |
Documento de conferencia publisherVersion |
| author |
Bernardi, Emanuel Pipino, Hugo Cappelletti, Carlos A. Adam, Eduardo J. |
| author_facet |
Bernardi, Emanuel Pipino, Hugo Cappelletti, Carlos A. Adam, Eduardo J. |
| author_sort |
Bernardi, Emanuel |
| title |
Adaptive Predictive Control for Industrial Processes |
| title_short |
Adaptive Predictive Control for Industrial Processes |
| title_full |
Adaptive Predictive Control for Industrial Processes |
| title_fullStr |
Adaptive Predictive Control for Industrial Processes |
| title_full_unstemmed |
Adaptive Predictive Control for Industrial Processes |
| title_sort |
adaptive predictive control for industrial processes |
| publisher |
IEEE |
| publishDate |
2024 |
| url |
http://hdl.handle.net/20.500.12272/11235 |
| work_keys_str_mv |
AT bernardiemanuel adaptivepredictivecontrolforindustrialprocesses AT pipinohugo adaptivepredictivecontrolforindustrialprocesses AT cappelletticarlosa adaptivepredictivecontrolforindustrialprocesses AT adameduardoj adaptivepredictivecontrolforindustrialprocesses |
| _version_ |
1809230384233185280 |