Exploring Quantitative Observation Impact in Partial and Continuous Cycling Ensemble Kalman Filter Data Assimilation Systems
Fil: Casaretto, Gimena. Servicio Meteorológico Nacional. Dirección Nacional de Ciencia e Innovación en Productos y Servicios. Dirección de Productos de Modelación Ambiental y de Sensores Remotos; Argentina.
Guardado en:
| Autores principales: | , , , , |
|---|---|
| Formato: | Artículo |
| Lenguaje: | Inglés |
| Publicado: |
American Meteorological Society
2025
|
| Materias: | |
| Acceso en línea: | https://doi.org/10.1175/WAF-D-24-0127.1 http://hdl.handle.net/20.500.12160/3004 |
| Aporte de: |
| id |
I63-R169-20.500.12160-3004 |
|---|---|
| record_format |
dspace |
| spelling |
I63-R169-20.500.12160-30042025-05-01T07:50:39Z Exploring Quantitative Observation Impact in Partial and Continuous Cycling Ensemble Kalman Filter Data Assimilation Systems Casaretto, Gimena Schwartz, Craig S. Dillon, María Eugenia García Skabar, Yanina Ruiz, Juan José Observation impact EFSOI Ensemble Kalman filter Data assimilation CC PC Rapid Refresh Model Fil: Casaretto, Gimena. Servicio Meteorológico Nacional. Dirección Nacional de Ciencia e Innovación en Productos y Servicios. Dirección de Productos de Modelación Ambiental y de Sensores Remotos; Argentina. This study applies the Ensemble Forecast Sensitivity to Observation Impact (EFSOI) technique to two 80-member ensemble Kalman filter (EnKF) data assimilation (DA) systems over the United States, differing only in cycling strategy: continuous cycling (CC) and partial cycling (PC). EFSOI calculations were performed using 1-hour, 6-hour and 12-hour evaluation forecast times, verified against the Rapid Refresh Model (RAP) analysis. Beneficial impact rates indicated that most observations were beneficial for both DA systems and forecast times, with no significant difference between PC and CC. Differences in cumulative observation impacts were statistically significant only for sources with few observations and small impacts, like mesonet observations. For numerous and impactful observations, such as rawinsondes and aircraft, differences were not statistically significant, suggesting similar use of important observations by PC and CC. PC forecasts were better than CC forecasts, but this improvement is not clearly due to better use of observations. Variable-wise analysis showed similar behavior between PC and CC for impact rates and cumulative impacts of U, V, T, RH, and surface zonal wind. Overall, there was no evidence that either PC or CC systematically used observations better, with mixed results across observation types and sources. Differences between PC and CC were typically small and not statistically significant for the most impactful observations and variables. Fundamental methodological differences between PC and CC did not significantly impact their ability to assimilate observations, the process of ingesting global fields likely responsible for improved PC forecasts relative to CC. 2025-04-30T18:18:19Z 2025-04-30T18:18:19Z 2025-04-18 Artículo Casaretto, G., C. S. Schwartz, M. E. Dillon, Y. Gracia Skabar, and J. J. Ruiz, 2025: Exploring Quantitative Observation Impact in Partial and Continuous Cycling Ensemble Kalman Filter Data Assimilation Systems. Wea. Forecasting, https://doi.org/10.1175/WAF-D-24-0127.1, in press. 1534-7486 https://doi.org/10.1175/WAF-D-24-0127.1 http://hdl.handle.net/20.500.12160/3004 eng info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ info:eu-repo/semantics/openAccess application/pdf American Meteorological Society |
| institution |
Servicio Meteorológico Nacional (SMN) |
| institution_str |
I-63 |
| repository_str |
R-169 |
| collection |
El Abrigo - Repositorio Institucional del Servicio Meteorológico Nacional (SMN) |
| language |
Inglés |
| topic |
Observation impact EFSOI Ensemble Kalman filter Data assimilation CC PC Rapid Refresh Model |
| spellingShingle |
Observation impact EFSOI Ensemble Kalman filter Data assimilation CC PC Rapid Refresh Model Casaretto, Gimena Schwartz, Craig S. Dillon, María Eugenia García Skabar, Yanina Ruiz, Juan José Exploring Quantitative Observation Impact in Partial and Continuous Cycling Ensemble Kalman Filter Data Assimilation Systems |
| topic_facet |
Observation impact EFSOI Ensemble Kalman filter Data assimilation CC PC Rapid Refresh Model |
| description |
Fil: Casaretto, Gimena. Servicio Meteorológico Nacional. Dirección Nacional de Ciencia e Innovación en Productos y Servicios. Dirección de Productos de Modelación Ambiental y de Sensores Remotos; Argentina. |
| format |
Artículo |
| author |
Casaretto, Gimena Schwartz, Craig S. Dillon, María Eugenia García Skabar, Yanina Ruiz, Juan José |
| author_facet |
Casaretto, Gimena Schwartz, Craig S. Dillon, María Eugenia García Skabar, Yanina Ruiz, Juan José |
| author_sort |
Casaretto, Gimena |
| title |
Exploring Quantitative Observation Impact in Partial and Continuous Cycling Ensemble Kalman Filter Data Assimilation Systems |
| title_short |
Exploring Quantitative Observation Impact in Partial and Continuous Cycling Ensemble Kalman Filter Data Assimilation Systems |
| title_full |
Exploring Quantitative Observation Impact in Partial and Continuous Cycling Ensemble Kalman Filter Data Assimilation Systems |
| title_fullStr |
Exploring Quantitative Observation Impact in Partial and Continuous Cycling Ensemble Kalman Filter Data Assimilation Systems |
| title_full_unstemmed |
Exploring Quantitative Observation Impact in Partial and Continuous Cycling Ensemble Kalman Filter Data Assimilation Systems |
| title_sort |
exploring quantitative observation impact in partial and continuous cycling ensemble kalman filter data assimilation systems |
| publisher |
American Meteorological Society |
| publishDate |
2025 |
| url |
https://doi.org/10.1175/WAF-D-24-0127.1 http://hdl.handle.net/20.500.12160/3004 |
| work_keys_str_mv |
AT casarettogimena exploringquantitativeobservationimpactinpartialandcontinuouscyclingensemblekalmanfilterdataassimilationsystems AT schwartzcraigs exploringquantitativeobservationimpactinpartialandcontinuouscyclingensemblekalmanfilterdataassimilationsystems AT dillonmariaeugenia exploringquantitativeobservationimpactinpartialandcontinuouscyclingensemblekalmanfilterdataassimilationsystems AT garciaskabaryanina exploringquantitativeobservationimpactinpartialandcontinuouscyclingensemblekalmanfilterdataassimilationsystems AT ruizjuanjose exploringquantitativeobservationimpactinpartialandcontinuouscyclingensemblekalmanfilterdataassimilationsystems |
| _version_ |
1832705259633377280 |