Ensemble Forecast Sensitivity to Observations applied to a regional data assimilation system over Argentina

Fil: Dillon, María Eugenia. Servicio Meteorológico Nacional. Dirección Nacional de Ciencia e Innovación en Productos y Servicios. Dirección de Productos de Modelación Ambiental y de Sensores Remotos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Universidad de Buenos Aires....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Casaretto, Gimena, Dillon, María Eugenia, García Skabar, Yanina, Ruiz, Juan José, Sacco, Maximiliano, Lien, Guo-Yuan
Formato: artículo
Lenguaje:Español
Publicado: Science Conf 2021
Materias:
WRF
Acceso en línea:http://hdl.handle.net/20.500.12160/1752
Aporte de:
id I63-R169-20.500.12160-1752
record_format dspace
spelling I63-R169-20.500.12160-17522023-08-01T13:05:59Z Ensemble Forecast Sensitivity to Observations applied to a regional data assimilation system over Argentina Casaretto, Gimena Dillon, María Eugenia García Skabar, Yanina Ruiz, Juan José Sacco, Maximiliano Lien, Guo-Yuan FORECAST SENSITIVITY OBSERVATION WRF LETKF Fil: Dillon, María Eugenia. Servicio Meteorológico Nacional. Dirección Nacional de Ciencia e Innovación en Productos y Servicios. Dirección de Productos de Modelación Ambiental y de Sensores Remotos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Observations that are assimilated into numerical weather prediction systems are con- formed by numerous data sets and the impact of the observations must be objectively evalu- ated. The Forecast Sensitivity to Observation (FSO) provides an e cient impact evaluation of each observation on forecasts. This study proposes applying the simpler ensemble formu- lation of FSO (EFSO, Kalnay et al 2012) to the Weather Research and Forecasting model coupled with the Local Ensemble Transform Kalman Filter in Argentina (Dillon et al 2019), during 25 days of the intensive observing period of the RELAMPAGO-CACTI eld campaign that was conducted during the 2018-2019 austral warm season in the center of Argentina (Nesbitt et al 2021). Analyses were obtained every 6-h with a 20-km resolution, assimilating data from soundings, aircrafts, satelite, AIRS and surface and automatic stations. EFSO was applied in order to detect those observations that were bene cial or detrimental for regional forecasts with evaluation forecast time of the EFSO computation set to 6-h. The results evidence that wind, temperature and humidity from automatic stations have almost nule positive impact. On the other hand, sounding, aircrafts and atmospheric infrared sounder observations present a larger positive impact. Also the elds of EFSO document the bene- cial impact of observations in the forecasts for the central area of Argentina. It is shown that the EFSO method can e ciently suggest data selection criteria. 2021-12-22T12:55:00Z 2021-12-22T12:55:00Z 2021 artículo http://hdl.handle.net/20.500.12160/1752 spa info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar/ application/pdf Science Conf
institution Servicio Meteorológico Nacional (SMN)
institution_str I-63
repository_str R-169
collection El Abrigo - Repositorio Institucional del Servicio Meteorológico Nacional (SMN)
language Español
topic FORECAST SENSITIVITY
OBSERVATION
WRF
LETKF
spellingShingle FORECAST SENSITIVITY
OBSERVATION
WRF
LETKF
Casaretto, Gimena
Dillon, María Eugenia
García Skabar, Yanina
Ruiz, Juan José
Sacco, Maximiliano
Lien, Guo-Yuan
Ensemble Forecast Sensitivity to Observations applied to a regional data assimilation system over Argentina
topic_facet FORECAST SENSITIVITY
OBSERVATION
WRF
LETKF
description Fil: Dillon, María Eugenia. Servicio Meteorológico Nacional. Dirección Nacional de Ciencia e Innovación en Productos y Servicios. Dirección de Productos de Modelación Ambiental y de Sensores Remotos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina.
format artículo
author Casaretto, Gimena
Dillon, María Eugenia
García Skabar, Yanina
Ruiz, Juan José
Sacco, Maximiliano
Lien, Guo-Yuan
author_facet Casaretto, Gimena
Dillon, María Eugenia
García Skabar, Yanina
Ruiz, Juan José
Sacco, Maximiliano
Lien, Guo-Yuan
author_sort Casaretto, Gimena
title Ensemble Forecast Sensitivity to Observations applied to a regional data assimilation system over Argentina
title_short Ensemble Forecast Sensitivity to Observations applied to a regional data assimilation system over Argentina
title_full Ensemble Forecast Sensitivity to Observations applied to a regional data assimilation system over Argentina
title_fullStr Ensemble Forecast Sensitivity to Observations applied to a regional data assimilation system over Argentina
title_full_unstemmed Ensemble Forecast Sensitivity to Observations applied to a regional data assimilation system over Argentina
title_sort ensemble forecast sensitivity to observations applied to a regional data assimilation system over argentina
publisher Science Conf
publishDate 2021
url http://hdl.handle.net/20.500.12160/1752
work_keys_str_mv AT casarettogimena ensembleforecastsensitivitytoobservationsappliedtoaregionaldataassimilationsystemoverargentina
AT dillonmariaeugenia ensembleforecastsensitivitytoobservationsappliedtoaregionaldataassimilationsystemoverargentina
AT garciaskabaryanina ensembleforecastsensitivitytoobservationsappliedtoaregionaldataassimilationsystemoverargentina
AT ruizjuanjose ensembleforecastsensitivitytoobservationsappliedtoaregionaldataassimilationsystemoverargentina
AT saccomaximiliano ensembleforecastsensitivitytoobservationsappliedtoaregionaldataassimilationsystemoverargentina
AT lienguoyuan ensembleforecastsensitivitytoobservationsappliedtoaregionaldataassimilationsystemoverargentina
_version_ 1832705060762550272