A penalization method to estimate the intrinsic dimensionality of data
We propose a novel penalization method for estimating the intrinsic dimensionality of data within a Probabilistic Principal Components Model, extending beyond the Gaussian case. Unlike existing approaches, our method is designed to handle non-normal data, providing a flexible alternative to traditio...
Guardado en:
| Autores principales: | , , |
|---|---|
| Formato: | Artículo |
| Lenguaje: | Inglés |
| Publicado: |
Statistical Papers (e-ISSN: 1613-9798)
2025
|
| Materias: | |
| Acceso en línea: | https://repositorio.utdt.edu/handle/20.500.13098/13449 |
| Aporte de: |
| id |
I57-R163-20.500.13098-13449 |
|---|---|
| record_format |
dspace |
| spelling |
I57-R163-20.500.13098-134492025-06-07T05:03:00Z A penalization method to estimate the intrinsic dimensionality of data Forzani, Liliana Rodriguez, Daniela Sued, Mariela Análisis de Datos Data Analysis Estadística Statistics We propose a novel penalization method for estimating the intrinsic dimensionality of data within a Probabilistic Principal Components Model, extending beyond the Gaussian case. Unlike existing approaches, our method is designed to handle non-normal data, providing a flexible alternative to traditional factor models. Our procedure identifies the dimension at which the eigenvalues of a scatter matrix stabilize. We establish the consistency of the procedure under mild conditions and demonstrate its robustness across a range of data distributions. A comparative analysis highlights its advantages over existing techniques, making it a valuable tool for dimensionality estimation without relying on distributional assumptions. Forzani, L., Rodriguez, D. & Sued, M. A penalization method to estimate the intrinsic dimensionality of data. Stat Papers 66, 46 (2025). https://doi.org/10.1007/s00362-025-01667-0 Statistical Papers (e-ISSN: 1613-9798) 2025-06-06T20:39:28Z 2025-02-06 info:eu-repo/semantics/article https://repositorio.utdt.edu/handle/20.500.13098/13449 eng Statistical Papers (e-ISSN: 1613-9798), Volume 66, article number 46 info:eu-repo/semantics/restrictedAccess http://rightsstatements.org/page/InC/1.0/?language=es 20 p. application/pdf application/pdf |
| institution |
Universidad Torcuato Di Tella |
| institution_str |
I-57 |
| repository_str |
R-163 |
| collection |
Repositorio Digital Universidad Torcuato Di Tella |
| language |
Inglés |
| orig_language_str_mv |
eng |
| topic |
Análisis de Datos Data Analysis Estadística Statistics |
| spellingShingle |
Análisis de Datos Data Analysis Estadística Statistics Forzani, Liliana Rodriguez, Daniela Sued, Mariela A penalization method to estimate the intrinsic dimensionality of data |
| topic_facet |
Análisis de Datos Data Analysis Estadística Statistics |
| description |
We propose a novel penalization method for estimating the intrinsic dimensionality of data within a Probabilistic Principal Components Model, extending beyond the Gaussian case. Unlike existing approaches, our method is designed to handle non-normal data, providing a flexible alternative to traditional factor models. Our procedure identifies the dimension at which the eigenvalues of a scatter matrix stabilize. We establish the consistency of the procedure under mild conditions and demonstrate its robustness across a range of data distributions. A comparative analysis highlights its advantages over existing techniques, making it a valuable tool for dimensionality estimation without relying on distributional assumptions. |
| format |
Artículo |
| author |
Forzani, Liliana Rodriguez, Daniela Sued, Mariela |
| author_facet |
Forzani, Liliana Rodriguez, Daniela Sued, Mariela |
| author_sort |
Forzani, Liliana |
| title |
A penalization method to estimate the intrinsic dimensionality of data |
| title_short |
A penalization method to estimate the intrinsic dimensionality of data |
| title_full |
A penalization method to estimate the intrinsic dimensionality of data |
| title_fullStr |
A penalization method to estimate the intrinsic dimensionality of data |
| title_full_unstemmed |
A penalization method to estimate the intrinsic dimensionality of data |
| title_sort |
penalization method to estimate the intrinsic dimensionality of data |
| publisher |
Statistical Papers (e-ISSN: 1613-9798) |
| publishDate |
2025 |
| url |
https://repositorio.utdt.edu/handle/20.500.13098/13449 |
| work_keys_str_mv |
AT forzanililiana apenalizationmethodtoestimatetheintrinsicdimensionalityofdata AT rodriguezdaniela apenalizationmethodtoestimatetheintrinsicdimensionalityofdata AT suedmariela apenalizationmethodtoestimatetheintrinsicdimensionalityofdata AT forzanililiana penalizationmethodtoestimatetheintrinsicdimensionalityofdata AT rodriguezdaniela penalizationmethodtoestimatetheintrinsicdimensionalityofdata AT suedmariela penalizationmethodtoestimatetheintrinsicdimensionalityofdata |
| _version_ |
1842217744770007040 |