VesselGPT: Autoregressive Modeling of Vascular Geometry
Versión final publicada: Feldman, P., Sinnona, M., Delrieux, C., Siless, V., Iarussi, E. (2026). VesselGPT: Autoregressive Modeling of Vascular Geometry. In: Gee, J.C., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2025. MICCAI 2025. Lecture Notes in Computer Science,...
Guardado en:
| Autores principales: | , , , , |
|---|---|
| Formato: | info:eu-repo/semantics/Preprint |
| Lenguaje: | Inglés |
| Publicado: |
2025
|
| Materias: | |
| Acceso en línea: | https://doi.org/10.48550/arXiv.2505.13318 https://repositorio.utdt.edu/handle/20.500.13098/13402 |
| Aporte de: |
| id |
I57-R163-20.500.13098-13402 |
|---|---|
| record_format |
dspace |
| spelling |
I57-R163-20.500.13098-134022025-10-23T11:54:41Z VesselGPT: Autoregressive Modeling of Vascular Geometry Feldman, Paula Sinnona, Martín Delrieux, Claudio Siless, Viviana Iarussi, Emmanuel Inteligencia Artificial Artificial Intelligence Tratamiento médico Medical Treatment Vasos Sanguíneos Blood Vessels Versión final publicada: Feldman, P., Sinnona, M., Delrieux, C., Siless, V., Iarussi, E. (2026). VesselGPT: Autoregressive Modeling of Vascular Geometry. In: Gee, J.C., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2025. MICCAI 2025. Lecture Notes in Computer Science, vol 15975. Springer, Cham. https://doi.org/10.1007/978-3-032-05325-1_63 Anatomical trees are critical for clinical diagnosis and treatment planning, yet their complex and diverse geometry make accurate representation a significant challenge. Motivated by the latest advances in large language models, we introduce an autoregressive method for synthesizing anatomical trees. Our approach first embeds vessel structures into a learned discrete vocabulary using a VQ-VAE architecture, then models their generation autoregressively with a GPT-2 model. This method effectively captures intricate geometries and branching patterns, enabling realistic vascular tree synthesis. Comprehensive qualitative and quantitative evaluations reveal that our technique achieves high-fidelity tree reconstruction with compact discrete representations. Moreover, our B-spline representation of vessel cross-sections preserves critical morphological details that are often overlooked in previous’ methods parameterizations. To the best of our knowledge, this work is the first to generate blood vessels in an autoregressive manner. Code, data, and trained models will be made available. Feldman, P., et al. (2025). VesselGPT: Autoregressive Modeling of Vascular Geometry. Arxiv. https://doi.org/10.48550/arXiv.2505.13318 2025-05-27T18:05:39Z 2025-05-19 info:eu-repo/semantics/Preprint https://doi.org/10.48550/arXiv.2505.13318 https://repositorio.utdt.edu/handle/20.500.13098/13402 eng Arxiv info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/4.0/deed.es 11 p. application/pdf application/pdf |
| institution |
Universidad Torcuato Di Tella |
| institution_str |
I-57 |
| repository_str |
R-163 |
| collection |
Repositorio Digital Universidad Torcuato Di Tella |
| language |
Inglés |
| orig_language_str_mv |
eng |
| topic |
Inteligencia Artificial Artificial Intelligence Tratamiento médico Medical Treatment Vasos Sanguíneos Blood Vessels |
| spellingShingle |
Inteligencia Artificial Artificial Intelligence Tratamiento médico Medical Treatment Vasos Sanguíneos Blood Vessels Feldman, Paula Sinnona, Martín Delrieux, Claudio Siless, Viviana Iarussi, Emmanuel VesselGPT: Autoregressive Modeling of Vascular Geometry |
| topic_facet |
Inteligencia Artificial Artificial Intelligence Tratamiento médico Medical Treatment Vasos Sanguíneos Blood Vessels |
| description |
Versión final publicada:
Feldman, P., Sinnona, M., Delrieux, C., Siless, V., Iarussi, E. (2026). VesselGPT: Autoregressive Modeling of Vascular Geometry. In: Gee, J.C., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2025. MICCAI 2025. Lecture Notes in Computer Science, vol 15975. Springer, Cham. https://doi.org/10.1007/978-3-032-05325-1_63 |
| format |
info:eu-repo/semantics/Preprint |
| author |
Feldman, Paula Sinnona, Martín Delrieux, Claudio Siless, Viviana Iarussi, Emmanuel |
| author_facet |
Feldman, Paula Sinnona, Martín Delrieux, Claudio Siless, Viviana Iarussi, Emmanuel |
| author_sort |
Feldman, Paula |
| title |
VesselGPT: Autoregressive Modeling of Vascular Geometry |
| title_short |
VesselGPT: Autoregressive Modeling of Vascular Geometry |
| title_full |
VesselGPT: Autoregressive Modeling of Vascular Geometry |
| title_fullStr |
VesselGPT: Autoregressive Modeling of Vascular Geometry |
| title_full_unstemmed |
VesselGPT: Autoregressive Modeling of Vascular Geometry |
| title_sort |
vesselgpt: autoregressive modeling of vascular geometry |
| publishDate |
2025 |
| url |
https://doi.org/10.48550/arXiv.2505.13318 https://repositorio.utdt.edu/handle/20.500.13098/13402 |
| work_keys_str_mv |
AT feldmanpaula vesselgptautoregressivemodelingofvasculargeometry AT sinnonamartin vesselgptautoregressivemodelingofvasculargeometry AT delrieuxclaudio vesselgptautoregressivemodelingofvasculargeometry AT silessviviana vesselgptautoregressivemodelingofvasculargeometry AT iarussiemmanuel vesselgptautoregressivemodelingofvasculargeometry |
| _version_ |
1847744043872681984 |