Optimal Reinsurance to Minimize the Probability of Drawdown under the Mean-Variance Premium Principle: Asymptotic Analysis

In this paper, we consider an optimal reinsurance problem to minimize the probability of drawdown for the scaled Cram´er-Lundberg risk model when the reinsurance premium is computed according to the mean-variance premium principle. We extend the work of Liang et al. [16] to the case of minimizing...

Descripción completa

Detalles Bibliográficos
Autores principales: Azcue, Pablo, Muler, Nora, Liang, Xiaoqing, Young, Virginia R.
Formato: Artículo
Lenguaje:Inglés
Publicado: SIAM Journal on Financial Mathematics 2023
Materias:
Acceso en línea:https://repositorio.utdt.edu/handle/20.500.13098/11875
https://doi.org/10.1137/21M1461666
Aporte de:
id I57-R163-20.500.13098-11875
record_format dspace
spelling I57-R163-20.500.13098-118752023-07-28T14:40:31Z Optimal Reinsurance to Minimize the Probability of Drawdown under the Mean-Variance Premium Principle: Asymptotic Analysis Azcue, Pablo Muler, Nora Liang, Xiaoqing Young, Virginia R. Optimal reinsurance Probability of drawdown Scaled Cram´er-Lundbergmodel Asymptotic analysis Diffusion approximation In this paper, we consider an optimal reinsurance problem to minimize the probability of drawdown for the scaled Cram´er-Lundberg risk model when the reinsurance premium is computed according to the mean-variance premium principle. We extend the work of Liang et al. [16] to the case of minimizing the probability of drawdown. By using the comparison method and the tool of adjustment coefficients, we show that the minimum probability of drawdown for the scaled classical risk model converges to the minimum probability for its diffusion approximation, and the rate of convergence is of order O(n−1/2). We further show that using the optimal strategy from the diffusion approximation in the scaled classical risk model is O(n−1/2)-optimal Este documento es una versión del artículo publicado en SIAM Journal on Financial Mathematics, 14(1), 279–313 Universidad Torcuato Di Tella Hebei University of Technology Department of Mathematics, University of Michigan 2023-06-14T20:40:28Z 2023-06-14T20:40:28Z 2023 info:eu-repo/semantics/article info:eu-repo/semantics/submittedVersion https://repositorio.utdt.edu/handle/20.500.13098/11875 https://doi.org/10.1137/21M1461666 eng Azcue, P., Liang, X., Muler, N., & Young, V. R. (2023). Optimal Reinsurance to Minimize the Probability of Drawdown under the Mean-Variance Premium Principle: Asymptotic Analysis. SIAM Journal on Financial Mathematics, 14(1), 279–313. https://doi.org/10.1137/21m1461666 info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-sa/2.5/ar/ 37 p. application/pdf application/pdf SIAM Journal on Financial Mathematics
institution Universidad Torcuato Di Tella
institution_str I-57
repository_str R-163
collection Repositorio Digital Universidad Torcuato Di Tella
language Inglés
orig_language_str_mv eng
topic Optimal reinsurance
Probability of drawdown
Scaled Cram´er-Lundbergmodel
Asymptotic analysis
Diffusion approximation
spellingShingle Optimal reinsurance
Probability of drawdown
Scaled Cram´er-Lundbergmodel
Asymptotic analysis
Diffusion approximation
Azcue, Pablo
Muler, Nora
Liang, Xiaoqing
Young, Virginia R.
Optimal Reinsurance to Minimize the Probability of Drawdown under the Mean-Variance Premium Principle: Asymptotic Analysis
topic_facet Optimal reinsurance
Probability of drawdown
Scaled Cram´er-Lundbergmodel
Asymptotic analysis
Diffusion approximation
description In this paper, we consider an optimal reinsurance problem to minimize the probability of drawdown for the scaled Cram´er-Lundberg risk model when the reinsurance premium is computed according to the mean-variance premium principle. We extend the work of Liang et al. [16] to the case of minimizing the probability of drawdown. By using the comparison method and the tool of adjustment coefficients, we show that the minimum probability of drawdown for the scaled classical risk model converges to the minimum probability for its diffusion approximation, and the rate of convergence is of order O(n−1/2). We further show that using the optimal strategy from the diffusion approximation in the scaled classical risk model is O(n−1/2)-optimal
format Artículo
submittedVersion
author Azcue, Pablo
Muler, Nora
Liang, Xiaoqing
Young, Virginia R.
author_facet Azcue, Pablo
Muler, Nora
Liang, Xiaoqing
Young, Virginia R.
author_sort Azcue, Pablo
title Optimal Reinsurance to Minimize the Probability of Drawdown under the Mean-Variance Premium Principle: Asymptotic Analysis
title_short Optimal Reinsurance to Minimize the Probability of Drawdown under the Mean-Variance Premium Principle: Asymptotic Analysis
title_full Optimal Reinsurance to Minimize the Probability of Drawdown under the Mean-Variance Premium Principle: Asymptotic Analysis
title_fullStr Optimal Reinsurance to Minimize the Probability of Drawdown under the Mean-Variance Premium Principle: Asymptotic Analysis
title_full_unstemmed Optimal Reinsurance to Minimize the Probability of Drawdown under the Mean-Variance Premium Principle: Asymptotic Analysis
title_sort optimal reinsurance to minimize the probability of drawdown under the mean-variance premium principle: asymptotic analysis
publisher SIAM Journal on Financial Mathematics
publishDate 2023
url https://repositorio.utdt.edu/handle/20.500.13098/11875
https://doi.org/10.1137/21M1461666
work_keys_str_mv AT azcuepablo optimalreinsurancetominimizetheprobabilityofdrawdownunderthemeanvariancepremiumprincipleasymptoticanalysis
AT mulernora optimalreinsurancetominimizetheprobabilityofdrawdownunderthemeanvariancepremiumprincipleasymptoticanalysis
AT liangxiaoqing optimalreinsurancetominimizetheprobabilityofdrawdownunderthemeanvariancepremiumprincipleasymptoticanalysis
AT youngvirginiar optimalreinsurancetominimizetheprobabilityofdrawdownunderthemeanvariancepremiumprincipleasymptoticanalysis
_version_ 1808040594845466624