ON BESSEL-RIESZ OPERATORS
We consider a class of conv olution operator denoted ϕα W obtained by convolution with a generalized function expressible in terms of the Bessel function on first kind γ J with argument the distribution ( ) P ± i0 . We study some elementary properties of the operator ϕα W like the semigroup property...
Guardado en:
| Autor principal: | |
|---|---|
| Formato: | Artículo revista |
| Lenguaje: | Español |
| Publicado: |
Facultad de Ciencias Exactas y Naturales y Agrimensura
2023
|
| Materias: | |
| Acceso en línea: | https://revistas.unne.edu.ar/index.php/fce/article/view/6816 |
| Aporte de: |
| id |
I48-R154-article-6816 |
|---|---|
| record_format |
ojs |
| spelling |
I48-R154-article-68162023-08-12T00:09:30Z ON BESSEL-RIESZ OPERATORS Cerutti, Rubén A. Bessel-Riesz potentials fractional derivative hypersingular integral We consider a class of conv olution operator denoted ϕα W obtained by convolution with a generalized function expressible in terms of the Bessel function on first kind γ J with argument the distribution ( ) P ± i0 . We study some elementary properties of the operator ϕα W like the semigroup property ϕ = ϕ α β α+β W W W ; and ( +m2 ) α α−2 W ϕ = W for α > 2 where ( +m2 ) is the Klein-Gordon ultrahyperbolic operator. Moreover we prove that the operator ϕα W may be consider as a negative power of the Klein-Gordon operato Facultad de Ciencias Exactas y Naturales y Agrimensura 2023-08-12 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion application/pdf https://revistas.unne.edu.ar/index.php/fce/article/view/6816 10.30972/fac.2306816 FACENA; Vol. 23 (2007); 17-27 1851-507X 0325-4216 spa https://revistas.unne.edu.ar/index.php/fce/article/view/6816/6290 Derechos de autor 2023 FACENA |
| institution |
Universidad Nacional del Nordeste |
| institution_str |
I-48 |
| repository_str |
R-154 |
| container_title_str |
Revistas UNNE - Universidad Nacional del Noroeste (UNNE) |
| language |
Español |
| format |
Artículo revista |
| topic |
Bessel-Riesz potentials fractional derivative hypersingular integral |
| spellingShingle |
Bessel-Riesz potentials fractional derivative hypersingular integral Cerutti, Rubén A. ON BESSEL-RIESZ OPERATORS |
| topic_facet |
Bessel-Riesz potentials fractional derivative hypersingular integral |
| author |
Cerutti, Rubén A. |
| author_facet |
Cerutti, Rubén A. |
| author_sort |
Cerutti, Rubén A. |
| title |
ON BESSEL-RIESZ OPERATORS |
| title_short |
ON BESSEL-RIESZ OPERATORS |
| title_full |
ON BESSEL-RIESZ OPERATORS |
| title_fullStr |
ON BESSEL-RIESZ OPERATORS |
| title_full_unstemmed |
ON BESSEL-RIESZ OPERATORS |
| title_sort |
on bessel-riesz operators |
| description |
We consider a class of conv olution operator denoted ϕα W obtained by convolution with a generalized function expressible in terms of the Bessel function on first kind γ J with argument the distribution ( ) P ± i0 . We study some elementary properties of the operator ϕα W like the semigroup property ϕ = ϕ α β α+β W W W ; and ( +m2 ) α α−2 W ϕ = W for α > 2 where ( +m2 ) is the Klein-Gordon ultrahyperbolic operator. Moreover we prove that the operator ϕα W may be consider as a negative power of the Klein-Gordon operato |
| publisher |
Facultad de Ciencias Exactas y Naturales y Agrimensura |
| publishDate |
2023 |
| url |
https://revistas.unne.edu.ar/index.php/fce/article/view/6816 |
| work_keys_str_mv |
AT ceruttirubena onbesselrieszoperators |
| first_indexed |
2024-08-21T22:36:05Z |
| last_indexed |
2024-08-21T22:36:05Z |
| _version_ |
1808038379662606336 |