ON BESSEL-RIESZ OPERATORS
We consider a class of conv olution operator denoted ϕα W obtained by convolution with a generalized function expressible in terms of the Bessel function on first kind γ J with argument the distribution ( ) P ± i0 . We study some elementary properties of the operator ϕα W like the semigroup property...
Guardado en:
| Autor principal: | |
|---|---|
| Formato: | Artículo revista |
| Lenguaje: | Español |
| Publicado: |
Facultad de Ciencias Exactas y Naturales y Agrimensura
2023
|
| Materias: | |
| Acceso en línea: | https://revistas.unne.edu.ar/index.php/fce/article/view/6816 |
| Aporte de: |
| Sumario: | We consider a class of conv olution operator denoted ϕα W obtained by convolution with a generalized function expressible in terms of the Bessel function on first kind γ J with argument the distribution ( ) P ± i0 . We study some elementary properties of the operator ϕα W like the semigroup property ϕ = ϕ α β α+β W W W ; and ( +m2 ) α α−2 W ϕ = W for α > 2 where ( +m2 ) is the Klein-Gordon ultrahyperbolic operator. Moreover we prove that the operator ϕα W may be consider as a negative power of the Klein-Gordon operato |
|---|