Changing dynamics : time-varying autoregressive models using generalized additive modeling
Abstract: In psychology, the use of intensive longitudinal data has steeply increased during the past decade. As a result, studying temporal dependencies in such data with autoregressive modeling is becoming common practice. However, standard autoregressive models are often suboptimal as they assum...
Guardado en:
| Autores principales: | Bringmann, Laura F., Vigo, Daniel Eduardo, Borsboom, Denny, Hamaker, Ellen L., Aubert, André E., Tuerlinckx, Francis |
|---|---|
| Formato: | Artículo |
| Lenguaje: | Inglés |
| Publicado: |
American Psychological Association
2020
|
| Materias: | |
| Acceso en línea: | https://repositorio.uca.edu.ar/handle/123456789/10326 |
| Aporte de: |
Ejemplares similares
-
Detecting hiddens frecuencies in dynamical time series : a numerical report
por: Ortega, Guillermo
Publicado: (1995) -
Graphical models for time series : gaining insight into their computational implementation.
por: Barber, David -
Time series models for business and economics forecasting /
por: Franses, Philip Hans, 1963-
Publicado: (1998) -
Basic Econometrícs
por: Gujarati, Damodar N.
Publicado: (1997) -
Proceedings of the Symposium on Time Series Analysis :held at Broun University, June 11-14, 1962
por: Rosenblatt Murray ed
Publicado: (1963)