Changing dynamics : time-varying autoregressive models using generalized additive modeling
Abstract: In psychology, the use of intensive longitudinal data has steeply increased during the past decade. As a result, studying temporal dependencies in such data with autoregressive modeling is becoming common practice. However, standard autoregressive models are often suboptimal as they assum...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | Artículo |
Lenguaje: | Inglés |
Publicado: |
American Psychological Association
2020
|
Materias: | |
Acceso en línea: | https://repositorio.uca.edu.ar/handle/123456789/10326 |
Aporte de: |
id |
I33-R139123456789-10326 |
---|---|
record_format |
dspace |
institution |
Universidad Católica Argentina |
institution_str |
I-33 |
repository_str |
R-139 |
collection |
Repositorio Institucional de la Universidad Católica Argentina (UCA) |
language |
Inglés |
topic |
SERIES TEMPORALES METODOS ESTADISTICOS REGRESION LINEAL PSICOLOGIA MODELOS MATEMATICOS |
spellingShingle |
SERIES TEMPORALES METODOS ESTADISTICOS REGRESION LINEAL PSICOLOGIA MODELOS MATEMATICOS Bringmann, Laura F. Vigo, Daniel Eduardo Borsboom, Denny Hamaker, Ellen L. Aubert, André E. Tuerlinckx, Francis Changing dynamics : time-varying autoregressive models using generalized additive modeling |
topic_facet |
SERIES TEMPORALES METODOS ESTADISTICOS REGRESION LINEAL PSICOLOGIA MODELOS MATEMATICOS |
description |
Abstract: In psychology, the use of intensive longitudinal data has steeply increased during the past decade. As a result, studying temporal dependencies in such data with autoregressive modeling is becoming common
practice. However, standard autoregressive models are often suboptimal as they assume that parameters
are time-invariant. This is problematic if changing dynamics (e.g., changes in the temporal dependency
of a process) govern the time series. Often a change in the process, such as emotional well-being during
therapy, is the very reason why it is interesting and important to study psychological dynamics. As a
result, there is a need for an easily applicable method for studying such nonstationary processes that result
from changing dynamics. In this article we present such a tool: the semiparametric TV-AR model. We
show with a simulation study and an empirical application that the TV-AR model can approximate
nonstationary processes well if there are at least 100 time points available and no unknown abrupt
changes in the data. Notably, no prior knowledge of the processes that drive change in the dynamic
structure is necessary. We conclude that the TV-AR model has significant potential for studying changing
dynamics in psychology. |
format |
Artículo |
author |
Bringmann, Laura F. Vigo, Daniel Eduardo Borsboom, Denny Hamaker, Ellen L. Aubert, André E. Tuerlinckx, Francis |
author_facet |
Bringmann, Laura F. Vigo, Daniel Eduardo Borsboom, Denny Hamaker, Ellen L. Aubert, André E. Tuerlinckx, Francis |
author_sort |
Bringmann, Laura F. |
title |
Changing dynamics : time-varying autoregressive models using generalized additive modeling |
title_short |
Changing dynamics : time-varying autoregressive models using generalized additive modeling |
title_full |
Changing dynamics : time-varying autoregressive models using generalized additive modeling |
title_fullStr |
Changing dynamics : time-varying autoregressive models using generalized additive modeling |
title_full_unstemmed |
Changing dynamics : time-varying autoregressive models using generalized additive modeling |
title_sort |
changing dynamics : time-varying autoregressive models using generalized additive modeling |
publisher |
American Psychological Association |
publishDate |
2020 |
url |
https://repositorio.uca.edu.ar/handle/123456789/10326 |
work_keys_str_mv |
AT bringmannlauraf changingdynamicstimevaryingautoregressivemodelsusinggeneralizedadditivemodeling AT vigodanieleduardo changingdynamicstimevaryingautoregressivemodelsusinggeneralizedadditivemodeling AT borsboomdenny changingdynamicstimevaryingautoregressivemodelsusinggeneralizedadditivemodeling AT hamakerellenl changingdynamicstimevaryingautoregressivemodelsusinggeneralizedadditivemodeling AT aubertandree changingdynamicstimevaryingautoregressivemodelsusinggeneralizedadditivemodeling AT tuerlinckxfrancis changingdynamicstimevaryingautoregressivemodelsusinggeneralizedadditivemodeling |
bdutipo_str |
Repositorios |
_version_ |
1764820524282675201 |