Reduction of the computational cost of tuning methodology of a simulator of a physical system
Abstract: We propose a methodology for calibrating a physical system simulator and whose computational model represents its events in time series. The methodology reduces the search space of the fit parameters by exploring a database that contains stored historical events and their corresponding si...
Autores principales: | , , , , |
---|---|
Formato: | Parte de libro |
Lenguaje: | Inglés |
Publicado: |
Springer
2023
|
Materias: | |
Acceso en línea: | https://repositorio.uca.edu.ar/handle/123456789/17072 |
Aporte de: |
id |
I33-R139-123456789-17072 |
---|---|
record_format |
dspace |
spelling |
I33-R139-123456789-170722023-09-08T05:01:12Z Reduction of the computational cost of tuning methodology of a simulator of a physical system Trigila, Mariano Gaudiani, Adriana Wong, Alvaro Rexachs, Dolores Luque, Emilio SIMULACION PARAMETRICA METODOLOGIA DE SINTONIZACION PATRON ORDINAL BASES DE DATOS HERRAMIENTAS INFORMATICAS SOFTWARE Abstract: We propose a methodology for calibrating a physical system simulator and whose computational model represents its events in time series. The methodology reduces the search space of the fit parameters by exploring a database that contains stored historical events and their corresponding simulator fit parameters. We carry out the symbolic representation of the time series using ordinal patterns to classify the series, which allows us to search and compare by similarity on the stored data of the series represented. This classification strategy allows us to speed up the parameter search process, reduce the computational cost of the adjustment process and consequently improve energy cost savings. The experiences showed a reduction in the computational cost of 29% compared with our tuning methodology proposed in previous research. 2023-09-07T10:45:57Z 2023-09-07T10:45:57Z 2023 Parte de libro Trigila, M. et al. Reduction of the computational cost of tuning methodology of a simulator of a physical system [en línea]. En: Mikyška, J. et al. (eds). Computational Science. Lecture notes in Computer Science, vol 10475. Cham : Springer, 2023. doi: 10.1007/978-3-031-36024-4_49. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/17072 978-3-031-36023-7 (impreso) 978-3-031-36024-4 (online) https://repositorio.uca.edu.ar/handle/123456789/17072 10.1007/978-3-031-36024-4_49 eng Acceso restringido http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf Springer En: Mikyška, J. et al. (eds). Computational Science. Lecture notes in Computer Science, vol 10475. Cham : Springer, 2023. |
institution |
Universidad Católica Argentina |
institution_str |
I-33 |
repository_str |
R-139 |
collection |
Repositorio Institucional de la Universidad Católica Argentina (UCA) |
language |
Inglés |
topic |
SIMULACION PARAMETRICA METODOLOGIA DE SINTONIZACION PATRON ORDINAL BASES DE DATOS HERRAMIENTAS INFORMATICAS SOFTWARE |
spellingShingle |
SIMULACION PARAMETRICA METODOLOGIA DE SINTONIZACION PATRON ORDINAL BASES DE DATOS HERRAMIENTAS INFORMATICAS SOFTWARE Trigila, Mariano Gaudiani, Adriana Wong, Alvaro Rexachs, Dolores Luque, Emilio Reduction of the computational cost of tuning methodology of a simulator of a physical system |
topic_facet |
SIMULACION PARAMETRICA METODOLOGIA DE SINTONIZACION PATRON ORDINAL BASES DE DATOS HERRAMIENTAS INFORMATICAS SOFTWARE |
description |
Abstract: We propose a methodology for calibrating a physical system simulator and whose computational model represents its events in time series. The
methodology reduces the search space of the fit parameters by exploring a database that contains stored historical events and their corresponding simulator fit
parameters. We carry out the symbolic representation of the time series using
ordinal patterns to classify the series, which allows us to search and compare by
similarity on the stored data of the series represented. This classification strategy allows us to speed up the parameter search process, reduce the computational cost of the adjustment process and consequently improve energy cost savings. The experiences showed a reduction in the computational cost of 29%
compared with our tuning methodology proposed in previous research. |
format |
Parte de libro |
author |
Trigila, Mariano Gaudiani, Adriana Wong, Alvaro Rexachs, Dolores Luque, Emilio |
author_facet |
Trigila, Mariano Gaudiani, Adriana Wong, Alvaro Rexachs, Dolores Luque, Emilio |
author_sort |
Trigila, Mariano |
title |
Reduction of the computational cost of tuning methodology of a simulator of a physical system |
title_short |
Reduction of the computational cost of tuning methodology of a simulator of a physical system |
title_full |
Reduction of the computational cost of tuning methodology of a simulator of a physical system |
title_fullStr |
Reduction of the computational cost of tuning methodology of a simulator of a physical system |
title_full_unstemmed |
Reduction of the computational cost of tuning methodology of a simulator of a physical system |
title_sort |
reduction of the computational cost of tuning methodology of a simulator of a physical system |
publisher |
Springer |
publishDate |
2023 |
url |
https://repositorio.uca.edu.ar/handle/123456789/17072 |
work_keys_str_mv |
AT trigilamariano reductionofthecomputationalcostoftuningmethodologyofasimulatorofaphysicalsystem AT gaudianiadriana reductionofthecomputationalcostoftuningmethodologyofasimulatorofaphysicalsystem AT wongalvaro reductionofthecomputationalcostoftuningmethodologyofasimulatorofaphysicalsystem AT rexachsdolores reductionofthecomputationalcostoftuningmethodologyofasimulatorofaphysicalsystem AT luqueemilio reductionofthecomputationalcostoftuningmethodologyofasimulatorofaphysicalsystem |
_version_ |
1807949271831412736 |