Recent applications of superresolution microscopy in neurobiology

Abstract: Chemical synapses in brain are structural differentiations where excitatory or inhibitory signals are vectorially transmitted between two neurons. Excitatory synapses occur mostly on dendritic spines, submicron sized protrusions of the neuronal dendritic arborizations. Axons establish cont...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Willig, Katrin I., Barrantes, Francisco José
Formato: Artículo
Lenguaje:Inglés
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://repositorio.uca.edu.ar/handle/123456789/15338
Aporte de:
Descripción
Sumario:Abstract: Chemical synapses in brain are structural differentiations where excitatory or inhibitory signals are vectorially transmitted between two neurons. Excitatory synapses occur mostly on dendritic spines, submicron sized protrusions of the neuronal dendritic arborizations. Axons establish contacts with these tiny specializations purported to be the smallest functional processing units in the central nervous system. The minute size of synapses and their macromolecular constituents creates an inherent difficulty for imaging but makes them an ideal object for superresolution microscopy. Here we discuss some representative examples of nanoscopy studies, ranging from quantification of receptors and scaffolding proteins in postsynaptic densities and their dynamic behavior, to imaging of synaptic vesicle proteins and dendritic spines in living neurons or even live animals.