A converse sampling theorem in reproducing kernel Banach spaces

Abstract: We present a converse Kramer type sampling theorem over semi-inner product reproducing kernel Banach spaces. Assuming that a sampling expansion holds for every f belonging to a semi-inner product reproducing kernel Banach space B for a xed sequence of interpolating functions {a −1 j...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Centeno, Hernán D., Medina, Juan M.
Formato: Artículo
Lenguaje:Inglés
Publicado: Springer Nature 2022
Materias:
Acceso en línea:https://repositorio.uca.edu.ar/handle/123456789/15167
Aporte de:
Descripción
Sumario:Abstract: We present a converse Kramer type sampling theorem over semi-inner product reproducing kernel Banach spaces. Assuming that a sampling expansion holds for every f belonging to a semi-inner product reproducing kernel Banach space B for a xed sequence of interpolating functions {a −1 j Sj (t)}j and a subset of sampling points {tj}j , it results that such sequence must be a X∗ d -Riesz basis and a sampling basis for the space. Moreover, there exists an equivalent (in norm) reproducing kernel Banach space with a reproducing kernel Gsamp such that {a −1 j Gsamp(tj , .)}j and {a −1 j Sj (.)}j are biorthogonal. These results are a generalization of some known results over reproducing kernel Hilbert spaces.