A converse sampling theorem in reproducing kernel Banach spaces

Abstract: We present a converse Kramer type sampling theorem over semi-inner product reproducing kernel Banach spaces. Assuming that a sampling expansion holds for every f belonging to a semi-inner product reproducing kernel Banach space B for a xed sequence of interpolating functions {a −1 j...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Centeno, Hernán D., Medina, Juan M.
Formato: Artículo
Lenguaje:Inglés
Publicado: Springer Nature 2022
Materias:
Acceso en línea:https://repositorio.uca.edu.ar/handle/123456789/15167
Aporte de:
id I33-R139-123456789-15167
record_format dspace
institution Universidad Católica Argentina
institution_str I-33
repository_str R-139
collection Repositorio Institucional de la Universidad Católica Argentina (UCA)
language Inglés
topic BASE DE MUESTREO
MUESTREO NO UNIFORME
REPRODUCCIÓN DE ESPACIOS DE HILBERT DEL KERNEL
REPRODUCCIÓN DE ESPACIOS DE BANACH DEL KERNEL
XD -FOTOGRAMAS
XD -BASE DE RIESZ
TEOREMAS DE MUESTREO DE KRAMER
PRODUCTOS SEMI-INTERIORES
MATEMATICA
spellingShingle BASE DE MUESTREO
MUESTREO NO UNIFORME
REPRODUCCIÓN DE ESPACIOS DE HILBERT DEL KERNEL
REPRODUCCIÓN DE ESPACIOS DE BANACH DEL KERNEL
XD -FOTOGRAMAS
XD -BASE DE RIESZ
TEOREMAS DE MUESTREO DE KRAMER
PRODUCTOS SEMI-INTERIORES
MATEMATICA
Centeno, Hernán D.
Medina, Juan M.
A converse sampling theorem in reproducing kernel Banach spaces
topic_facet BASE DE MUESTREO
MUESTREO NO UNIFORME
REPRODUCCIÓN DE ESPACIOS DE HILBERT DEL KERNEL
REPRODUCCIÓN DE ESPACIOS DE BANACH DEL KERNEL
XD -FOTOGRAMAS
XD -BASE DE RIESZ
TEOREMAS DE MUESTREO DE KRAMER
PRODUCTOS SEMI-INTERIORES
MATEMATICA
description Abstract: We present a converse Kramer type sampling theorem over semi-inner product reproducing kernel Banach spaces. Assuming that a sampling expansion holds for every f belonging to a semi-inner product reproducing kernel Banach space B for a xed sequence of interpolating functions {a −1 j Sj (t)}j and a subset of sampling points {tj}j , it results that such sequence must be a X∗ d -Riesz basis and a sampling basis for the space. Moreover, there exists an equivalent (in norm) reproducing kernel Banach space with a reproducing kernel Gsamp such that {a −1 j Gsamp(tj , .)}j and {a −1 j Sj (.)}j are biorthogonal. These results are a generalization of some known results over reproducing kernel Hilbert spaces.
format Artículo
author Centeno, Hernán D.
Medina, Juan M.
author_facet Centeno, Hernán D.
Medina, Juan M.
author_sort Centeno, Hernán D.
title A converse sampling theorem in reproducing kernel Banach spaces
title_short A converse sampling theorem in reproducing kernel Banach spaces
title_full A converse sampling theorem in reproducing kernel Banach spaces
title_fullStr A converse sampling theorem in reproducing kernel Banach spaces
title_full_unstemmed A converse sampling theorem in reproducing kernel Banach spaces
title_sort converse sampling theorem in reproducing kernel banach spaces
publisher Springer Nature
publishDate 2022
url https://repositorio.uca.edu.ar/handle/123456789/15167
work_keys_str_mv AT centenohernand aconversesamplingtheoreminreproducingkernelbanachspaces
AT medinajuanm aconversesamplingtheoreminreproducingkernelbanachspaces
AT centenohernand conversesamplingtheoreminreproducingkernelbanachspaces
AT medinajuanm conversesamplingtheoreminreproducingkernelbanachspaces
bdutipo_str Repositorios
_version_ 1764820525592346624