A converse sampling theorem in reproducing kernel Banach spaces
Abstract: We present a converse Kramer type sampling theorem over semi-inner product reproducing kernel Banach spaces. Assuming that a sampling expansion holds for every f belonging to a semi-inner product reproducing kernel Banach space B for a xed sequence of interpolating functions {a −1 j...
Guardado en:
| Autores principales: | , |
|---|---|
| Formato: | Artículo |
| Lenguaje: | Inglés |
| Publicado: |
Springer Nature
2022
|
| Materias: | |
| Acceso en línea: | https://repositorio.uca.edu.ar/handle/123456789/15167 |
| Aporte de: |
| id |
I33-R139-123456789-15167 |
|---|---|
| record_format |
dspace |
| institution |
Universidad Católica Argentina |
| institution_str |
I-33 |
| repository_str |
R-139 |
| collection |
Repositorio Institucional de la Universidad Católica Argentina (UCA) |
| language |
Inglés |
| topic |
BASE DE MUESTREO MUESTREO NO UNIFORME REPRODUCCIÓN DE ESPACIOS DE HILBERT DEL KERNEL REPRODUCCIÓN DE ESPACIOS DE BANACH DEL KERNEL XD -FOTOGRAMAS XD -BASE DE RIESZ TEOREMAS DE MUESTREO DE KRAMER PRODUCTOS SEMI-INTERIORES MATEMATICA |
| spellingShingle |
BASE DE MUESTREO MUESTREO NO UNIFORME REPRODUCCIÓN DE ESPACIOS DE HILBERT DEL KERNEL REPRODUCCIÓN DE ESPACIOS DE BANACH DEL KERNEL XD -FOTOGRAMAS XD -BASE DE RIESZ TEOREMAS DE MUESTREO DE KRAMER PRODUCTOS SEMI-INTERIORES MATEMATICA Centeno, Hernán D. Medina, Juan M. A converse sampling theorem in reproducing kernel Banach spaces |
| topic_facet |
BASE DE MUESTREO MUESTREO NO UNIFORME REPRODUCCIÓN DE ESPACIOS DE HILBERT DEL KERNEL REPRODUCCIÓN DE ESPACIOS DE BANACH DEL KERNEL XD -FOTOGRAMAS XD -BASE DE RIESZ TEOREMAS DE MUESTREO DE KRAMER PRODUCTOS SEMI-INTERIORES MATEMATICA |
| description |
Abstract:
We present a converse Kramer type sampling theorem over semi-inner product
reproducing kernel Banach spaces. Assuming that a sampling expansion holds for
every f belonging to a semi-inner product reproducing kernel Banach space B for a
xed sequence of interpolating functions {a
−1
j Sj (t)}j and a subset of sampling points
{tj}j , it results that such sequence must be a X∗
d
-Riesz basis and a sampling basis
for the space. Moreover, there exists an equivalent (in norm) reproducing kernel
Banach space with a reproducing kernel Gsamp such that {a
−1
j Gsamp(tj , .)}j and
{a
−1
j Sj (.)}j are biorthogonal. These results are a generalization of some known
results over reproducing kernel Hilbert spaces. |
| format |
Artículo |
| author |
Centeno, Hernán D. Medina, Juan M. |
| author_facet |
Centeno, Hernán D. Medina, Juan M. |
| author_sort |
Centeno, Hernán D. |
| title |
A converse sampling theorem in reproducing kernel Banach spaces |
| title_short |
A converse sampling theorem in reproducing kernel Banach spaces |
| title_full |
A converse sampling theorem in reproducing kernel Banach spaces |
| title_fullStr |
A converse sampling theorem in reproducing kernel Banach spaces |
| title_full_unstemmed |
A converse sampling theorem in reproducing kernel Banach spaces |
| title_sort |
converse sampling theorem in reproducing kernel banach spaces |
| publisher |
Springer Nature |
| publishDate |
2022 |
| url |
https://repositorio.uca.edu.ar/handle/123456789/15167 |
| work_keys_str_mv |
AT centenohernand aconversesamplingtheoreminreproducingkernelbanachspaces AT medinajuanm aconversesamplingtheoreminreproducingkernelbanachspaces AT centenohernand conversesamplingtheoreminreproducingkernelbanachspaces AT medinajuanm conversesamplingtheoreminreproducingkernelbanachspaces |
| bdutipo_str |
Repositorios |
| _version_ |
1764820525592346624 |