Modified nonlinear Schrödinger equation for frequency-dependent nonlinear profiles of arbitrary sign
In recent times, materials exhibiting frequency-dependent optical nonlinearities, such as nanoparticle-doped glasses and other metamaterials, have gathered significant interest. The simulation of the propagation of intense light pulses in such media, by means of the nonlinear Schrödinger equation (N...
Autores principales: | , , , , , |
---|---|
Formato: | Artículos de Publicaciones Periódicas acceptedVersion |
Lenguaje: | Inglés |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://ri.itba.edu.ar/handle/123456789/4032 |
Aporte de: |
id |
I32-R138-123456789-4032 |
---|---|
record_format |
dspace |
spelling |
I32-R138-123456789-40322022-12-07T13:07:01Z Modified nonlinear Schrödinger equation for frequency-dependent nonlinear profiles of arbitrary sign Bonetti, Juan I. Linale, N. Sánchez, Alfredo D. Hernández, Santiago M. Fierens, Pablo Ignacio Grosz, Diego ECUACIONES DE SCHRÖDINGER ECUACIONES DIFERENCIALES NO LINEALES OPTICA NO LINEAL In recent times, materials exhibiting frequency-dependent optical nonlinearities, such as nanoparticle-doped glasses and other metamaterials, have gathered significant interest. The simulation of the propagation of intense light pulses in such media, by means of the nonlinear Schrödinger equation (NLSE), poses the problem in that straightforward inclusion of a frequency-dependent nonlinearity may lead to unphysical results, namely, neither the energy nor the photon number is conserved in general. Inspired by a simple quantum-mechanical argument, we derive an energy- and photon-conserving NLSE (pcNLSE). Unlike others, our approach relies only on the knowledge of the frequency-dependent nonlinearity profile and a generalization of Miller’s rule for nonlinear susceptibility, enabling the simulation of nonlinear profiles of arbitrary frequency dependence and sign. Moreover, the proposed pcNLSE can be efficiently solved by the same numerical techniques commonly used to deal with the NLSE. Relevant simulation results supporting our theoretical approach are presented. 2020 2022-11-17T18:17:52Z 2022-11-17T18:17:52Z 2019 Artículos de Publicaciones Periódicas info:eu-repo/semantics/acceptedVersion 0740-3224 https://ri.itba.edu.ar/handle/123456789/4032 en info:eu-repo/semantics/altIdentifier/doi/10.1364/JOSAB.36.003139 info:eu-repo/semantics/embargoedAccess application/pdf |
institution |
Instituto Tecnológico de Buenos Aires (ITBA) |
institution_str |
I-32 |
repository_str |
R-138 |
collection |
Repositorio Institucional Instituto Tecnológico de Buenos Aires (ITBA) |
language |
Inglés |
topic |
ECUACIONES DE SCHRÖDINGER ECUACIONES DIFERENCIALES NO LINEALES OPTICA NO LINEAL |
spellingShingle |
ECUACIONES DE SCHRÖDINGER ECUACIONES DIFERENCIALES NO LINEALES OPTICA NO LINEAL Bonetti, Juan I. Linale, N. Sánchez, Alfredo D. Hernández, Santiago M. Fierens, Pablo Ignacio Grosz, Diego Modified nonlinear Schrödinger equation for frequency-dependent nonlinear profiles of arbitrary sign |
topic_facet |
ECUACIONES DE SCHRÖDINGER ECUACIONES DIFERENCIALES NO LINEALES OPTICA NO LINEAL |
description |
In recent times, materials exhibiting frequency-dependent optical nonlinearities, such as nanoparticle-doped glasses and other metamaterials, have gathered significant interest. The simulation of the propagation of intense light pulses in such media, by means of the nonlinear Schrödinger equation (NLSE), poses the problem in that straightforward inclusion of a frequency-dependent nonlinearity may lead to unphysical results, namely, neither the energy nor the photon number is conserved in general. Inspired by a simple quantum-mechanical argument, we derive an energy- and photon-conserving NLSE (pcNLSE). Unlike others, our approach relies only on the knowledge of the frequency-dependent nonlinearity profile and a generalization of Miller’s rule for nonlinear susceptibility, enabling the simulation of nonlinear profiles of arbitrary frequency dependence and sign. Moreover, the proposed pcNLSE can be efficiently solved by the same numerical techniques commonly used to deal with the NLSE. Relevant simulation results supporting our theoretical approach are presented. |
format |
Artículos de Publicaciones Periódicas acceptedVersion |
author |
Bonetti, Juan I. Linale, N. Sánchez, Alfredo D. Hernández, Santiago M. Fierens, Pablo Ignacio Grosz, Diego |
author_facet |
Bonetti, Juan I. Linale, N. Sánchez, Alfredo D. Hernández, Santiago M. Fierens, Pablo Ignacio Grosz, Diego |
author_sort |
Bonetti, Juan I. |
title |
Modified nonlinear Schrödinger equation for frequency-dependent nonlinear profiles of arbitrary sign |
title_short |
Modified nonlinear Schrödinger equation for frequency-dependent nonlinear profiles of arbitrary sign |
title_full |
Modified nonlinear Schrödinger equation for frequency-dependent nonlinear profiles of arbitrary sign |
title_fullStr |
Modified nonlinear Schrödinger equation for frequency-dependent nonlinear profiles of arbitrary sign |
title_full_unstemmed |
Modified nonlinear Schrödinger equation for frequency-dependent nonlinear profiles of arbitrary sign |
title_sort |
modified nonlinear schrödinger equation for frequency-dependent nonlinear profiles of arbitrary sign |
publishDate |
2020 |
url |
https://ri.itba.edu.ar/handle/123456789/4032 |
work_keys_str_mv |
AT bonettijuani modifiednonlinearschrodingerequationforfrequencydependentnonlinearprofilesofarbitrarysign AT linalen modifiednonlinearschrodingerequationforfrequencydependentnonlinearprofilesofarbitrarysign AT sanchezalfredod modifiednonlinearschrodingerequationforfrequencydependentnonlinearprofilesofarbitrarysign AT hernandezsantiagom modifiednonlinearschrodingerequationforfrequencydependentnonlinearprofilesofarbitrarysign AT fierenspabloignacio modifiednonlinearschrodingerequationforfrequencydependentnonlinearprofilesofarbitrarysign AT groszdiego modifiednonlinearschrodingerequationforfrequencydependentnonlinearprofilesofarbitrarysign |
_version_ |
1765660932602593280 |