Modified nonlinear Schrödinger equation for frequency-dependent nonlinear profiles of arbitrary sign

In recent times, materials exhibiting frequency-dependent optical nonlinearities, such as nanoparticle-doped glasses and other metamaterials, have gathered significant interest. The simulation of the propagation of intense light pulses in such media, by means of the nonlinear Schrödinger equation (N...

Descripción completa

Detalles Bibliográficos
Autores principales: Bonetti, Juan I., Linale, N., Sánchez, Alfredo D., Hernández, Santiago M., Fierens, Pablo Ignacio, Grosz, Diego
Formato: Artículos de Publicaciones Periódicas acceptedVersion
Lenguaje:Inglés
Publicado: 2020
Materias:
Acceso en línea:https://ri.itba.edu.ar/handle/123456789/4032
Aporte de:
id I32-R138-123456789-4032
record_format dspace
spelling I32-R138-123456789-40322022-12-07T13:07:01Z Modified nonlinear Schrödinger equation for frequency-dependent nonlinear profiles of arbitrary sign Bonetti, Juan I. Linale, N. Sánchez, Alfredo D. Hernández, Santiago M. Fierens, Pablo Ignacio Grosz, Diego ECUACIONES DE SCHRÖDINGER ECUACIONES DIFERENCIALES NO LINEALES OPTICA NO LINEAL In recent times, materials exhibiting frequency-dependent optical nonlinearities, such as nanoparticle-doped glasses and other metamaterials, have gathered significant interest. The simulation of the propagation of intense light pulses in such media, by means of the nonlinear Schrödinger equation (NLSE), poses the problem in that straightforward inclusion of a frequency-dependent nonlinearity may lead to unphysical results, namely, neither the energy nor the photon number is conserved in general. Inspired by a simple quantum-mechanical argument, we derive an energy- and photon-conserving NLSE (pcNLSE). Unlike others, our approach relies only on the knowledge of the frequency-dependent nonlinearity profile and a generalization of Miller’s rule for nonlinear susceptibility, enabling the simulation of nonlinear profiles of arbitrary frequency dependence and sign. Moreover, the proposed pcNLSE can be efficiently solved by the same numerical techniques commonly used to deal with the NLSE. Relevant simulation results supporting our theoretical approach are presented. 2020 2022-11-17T18:17:52Z 2022-11-17T18:17:52Z 2019 Artículos de Publicaciones Periódicas info:eu-repo/semantics/acceptedVersion 0740-3224 https://ri.itba.edu.ar/handle/123456789/4032 en info:eu-repo/semantics/altIdentifier/doi/10.1364/JOSAB.36.003139 info:eu-repo/semantics/embargoedAccess application/pdf
institution Instituto Tecnológico de Buenos Aires (ITBA)
institution_str I-32
repository_str R-138
collection Repositorio Institucional Instituto Tecnológico de Buenos Aires (ITBA)
language Inglés
topic ECUACIONES DE SCHRÖDINGER
ECUACIONES DIFERENCIALES NO LINEALES
OPTICA NO LINEAL
spellingShingle ECUACIONES DE SCHRÖDINGER
ECUACIONES DIFERENCIALES NO LINEALES
OPTICA NO LINEAL
Bonetti, Juan I.
Linale, N.
Sánchez, Alfredo D.
Hernández, Santiago M.
Fierens, Pablo Ignacio
Grosz, Diego
Modified nonlinear Schrödinger equation for frequency-dependent nonlinear profiles of arbitrary sign
topic_facet ECUACIONES DE SCHRÖDINGER
ECUACIONES DIFERENCIALES NO LINEALES
OPTICA NO LINEAL
description In recent times, materials exhibiting frequency-dependent optical nonlinearities, such as nanoparticle-doped glasses and other metamaterials, have gathered significant interest. The simulation of the propagation of intense light pulses in such media, by means of the nonlinear Schrödinger equation (NLSE), poses the problem in that straightforward inclusion of a frequency-dependent nonlinearity may lead to unphysical results, namely, neither the energy nor the photon number is conserved in general. Inspired by a simple quantum-mechanical argument, we derive an energy- and photon-conserving NLSE (pcNLSE). Unlike others, our approach relies only on the knowledge of the frequency-dependent nonlinearity profile and a generalization of Miller’s rule for nonlinear susceptibility, enabling the simulation of nonlinear profiles of arbitrary frequency dependence and sign. Moreover, the proposed pcNLSE can be efficiently solved by the same numerical techniques commonly used to deal with the NLSE. Relevant simulation results supporting our theoretical approach are presented.
format Artículos de Publicaciones Periódicas
acceptedVersion
author Bonetti, Juan I.
Linale, N.
Sánchez, Alfredo D.
Hernández, Santiago M.
Fierens, Pablo Ignacio
Grosz, Diego
author_facet Bonetti, Juan I.
Linale, N.
Sánchez, Alfredo D.
Hernández, Santiago M.
Fierens, Pablo Ignacio
Grosz, Diego
author_sort Bonetti, Juan I.
title Modified nonlinear Schrödinger equation for frequency-dependent nonlinear profiles of arbitrary sign
title_short Modified nonlinear Schrödinger equation for frequency-dependent nonlinear profiles of arbitrary sign
title_full Modified nonlinear Schrödinger equation for frequency-dependent nonlinear profiles of arbitrary sign
title_fullStr Modified nonlinear Schrödinger equation for frequency-dependent nonlinear profiles of arbitrary sign
title_full_unstemmed Modified nonlinear Schrödinger equation for frequency-dependent nonlinear profiles of arbitrary sign
title_sort modified nonlinear schrödinger equation for frequency-dependent nonlinear profiles of arbitrary sign
publishDate 2020
url https://ri.itba.edu.ar/handle/123456789/4032
work_keys_str_mv AT bonettijuani modifiednonlinearschrodingerequationforfrequencydependentnonlinearprofilesofarbitrarysign
AT linalen modifiednonlinearschrodingerequationforfrequencydependentnonlinearprofilesofarbitrarysign
AT sanchezalfredod modifiednonlinearschrodingerequationforfrequencydependentnonlinearprofilesofarbitrarysign
AT hernandezsantiagom modifiednonlinearschrodingerequationforfrequencydependentnonlinearprofilesofarbitrarysign
AT fierenspabloignacio modifiednonlinearschrodingerequationforfrequencydependentnonlinearprofilesofarbitrarysign
AT groszdiego modifiednonlinearschrodingerequationforfrequencydependentnonlinearprofilesofarbitrarysign
_version_ 1765660932602593280