(Integral-)ISS of switched and time-varying impulsive systems based on global state weak linearization

"It is shown that impulsive systems of nonlinear, time-varying and/or switched form that allow a stable global state weak linearization are jointly input-to-state stable (ISS) under small inputs and integral ISS (iISS). The system is said to allow a global state weak linearization if its flow a...

Descripción completa

Detalles Bibliográficos
Autores principales: Mancilla-Aguilar, J. L., Haimovich, Hernán
Formato: Artículos de Publicaciones Periódicas acceptedVersion
Lenguaje:Inglés
Publicado: 2022
Materias:
Acceso en línea:http://ri.itba.edu.ar/handle/123456789/3882
Aporte de:
id I32-R138-123456789-3882
record_format dspace
spelling I32-R138-123456789-38822022-12-07T13:06:37Z (Integral-)ISS of switched and time-varying impulsive systems based on global state weak linearization Mancilla-Aguilar, J. L. Haimovich, Hernán ESTABILIDAD ASINTOTICA ECUACIONES NO LINEALES FUNCIONES DE LYAPUNOV SISTEMAS TIEMPO VARIANTES TECNICAS DE PERTURBACION RESPUESTA IMPULSIVA "It is shown that impulsive systems of nonlinear, time-varying and/or switched form that allow a stable global state weak linearization are jointly input-to-state stable (ISS) under small inputs and integral ISS (iISS). The system is said to allow a global state weak linearization if its flow and jump equations can be written as a (time-varying, switched) linear part plus a (nonlinear) pertubation satisfying a bound of affine form on the state. This bound reduces to a linear form under zero input but does not force the system to be linear under zero input. The given results generalize and extend previously existing ones in many directions: (a) no (dwell-time or other) constraints are placed on the impulse-time sequence, (b) the system need not be linear under zero input, (c) existence of a (common) Lyapunov function is not required, (d) the perturbation bound need not be linear on the input." 2022-05-12T14:11:00Z 2022-05-12T14:11:00Z 2021 Artículos de Publicaciones Periódicas info:eu-repo/semantics/acceptedVersion 0018-9286 http://ri.itba.edu.ar/handle/123456789/3882 en info:eu-repo/semantics/altIdentifier/doi/10.1109/TAC.2021.3137058 info:eu-repo/grantAgreement/FONCyT/PICT/2018-01385/AR. Ciudad Autónoma de Buenos Aires. application/pdf
institution Instituto Tecnológico de Buenos Aires (ITBA)
institution_str I-32
repository_str R-138
collection Repositorio Institucional Instituto Tecnológico de Buenos Aires (ITBA)
language Inglés
topic ESTABILIDAD ASINTOTICA
ECUACIONES NO LINEALES
FUNCIONES DE LYAPUNOV
SISTEMAS TIEMPO VARIANTES
TECNICAS DE PERTURBACION
RESPUESTA IMPULSIVA
spellingShingle ESTABILIDAD ASINTOTICA
ECUACIONES NO LINEALES
FUNCIONES DE LYAPUNOV
SISTEMAS TIEMPO VARIANTES
TECNICAS DE PERTURBACION
RESPUESTA IMPULSIVA
Mancilla-Aguilar, J. L.
Haimovich, Hernán
(Integral-)ISS of switched and time-varying impulsive systems based on global state weak linearization
topic_facet ESTABILIDAD ASINTOTICA
ECUACIONES NO LINEALES
FUNCIONES DE LYAPUNOV
SISTEMAS TIEMPO VARIANTES
TECNICAS DE PERTURBACION
RESPUESTA IMPULSIVA
description "It is shown that impulsive systems of nonlinear, time-varying and/or switched form that allow a stable global state weak linearization are jointly input-to-state stable (ISS) under small inputs and integral ISS (iISS). The system is said to allow a global state weak linearization if its flow and jump equations can be written as a (time-varying, switched) linear part plus a (nonlinear) pertubation satisfying a bound of affine form on the state. This bound reduces to a linear form under zero input but does not force the system to be linear under zero input. The given results generalize and extend previously existing ones in many directions: (a) no (dwell-time or other) constraints are placed on the impulse-time sequence, (b) the system need not be linear under zero input, (c) existence of a (common) Lyapunov function is not required, (d) the perturbation bound need not be linear on the input."
format Artículos de Publicaciones Periódicas
acceptedVersion
author Mancilla-Aguilar, J. L.
Haimovich, Hernán
author_facet Mancilla-Aguilar, J. L.
Haimovich, Hernán
author_sort Mancilla-Aguilar, J. L.
title (Integral-)ISS of switched and time-varying impulsive systems based on global state weak linearization
title_short (Integral-)ISS of switched and time-varying impulsive systems based on global state weak linearization
title_full (Integral-)ISS of switched and time-varying impulsive systems based on global state weak linearization
title_fullStr (Integral-)ISS of switched and time-varying impulsive systems based on global state weak linearization
title_full_unstemmed (Integral-)ISS of switched and time-varying impulsive systems based on global state weak linearization
title_sort (integral-)iss of switched and time-varying impulsive systems based on global state weak linearization
publishDate 2022
url http://ri.itba.edu.ar/handle/123456789/3882
work_keys_str_mv AT mancillaaguilarjl integralissofswitchedandtimevaryingimpulsivesystemsbasedonglobalstateweaklinearization
AT haimovichhernan integralissofswitchedandtimevaryingimpulsivesystemsbasedonglobalstateweaklinearization
_version_ 1765660999589822464