(Integral-)ISS of switched and time-varying impulsive systems based on global state weak linearization
"It is shown that impulsive systems of nonlinear, time-varying and/or switched form that allow a stable global state weak linearization are jointly input-to-state stable (ISS) under small inputs and integral ISS (iISS). The system is said to allow a global state weak linearization if its flow a...
Autores principales: | , |
---|---|
Formato: | Artículos de Publicaciones Periódicas acceptedVersion |
Lenguaje: | Inglés |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | http://ri.itba.edu.ar/handle/123456789/3882 |
Aporte de: |
id |
I32-R138-123456789-3882 |
---|---|
record_format |
dspace |
spelling |
I32-R138-123456789-38822022-12-07T13:06:37Z (Integral-)ISS of switched and time-varying impulsive systems based on global state weak linearization Mancilla-Aguilar, J. L. Haimovich, Hernán ESTABILIDAD ASINTOTICA ECUACIONES NO LINEALES FUNCIONES DE LYAPUNOV SISTEMAS TIEMPO VARIANTES TECNICAS DE PERTURBACION RESPUESTA IMPULSIVA "It is shown that impulsive systems of nonlinear, time-varying and/or switched form that allow a stable global state weak linearization are jointly input-to-state stable (ISS) under small inputs and integral ISS (iISS). The system is said to allow a global state weak linearization if its flow and jump equations can be written as a (time-varying, switched) linear part plus a (nonlinear) pertubation satisfying a bound of affine form on the state. This bound reduces to a linear form under zero input but does not force the system to be linear under zero input. The given results generalize and extend previously existing ones in many directions: (a) no (dwell-time or other) constraints are placed on the impulse-time sequence, (b) the system need not be linear under zero input, (c) existence of a (common) Lyapunov function is not required, (d) the perturbation bound need not be linear on the input." 2022-05-12T14:11:00Z 2022-05-12T14:11:00Z 2021 Artículos de Publicaciones Periódicas info:eu-repo/semantics/acceptedVersion 0018-9286 http://ri.itba.edu.ar/handle/123456789/3882 en info:eu-repo/semantics/altIdentifier/doi/10.1109/TAC.2021.3137058 info:eu-repo/grantAgreement/FONCyT/PICT/2018-01385/AR. Ciudad Autónoma de Buenos Aires. application/pdf |
institution |
Instituto Tecnológico de Buenos Aires (ITBA) |
institution_str |
I-32 |
repository_str |
R-138 |
collection |
Repositorio Institucional Instituto Tecnológico de Buenos Aires (ITBA) |
language |
Inglés |
topic |
ESTABILIDAD ASINTOTICA ECUACIONES NO LINEALES FUNCIONES DE LYAPUNOV SISTEMAS TIEMPO VARIANTES TECNICAS DE PERTURBACION RESPUESTA IMPULSIVA |
spellingShingle |
ESTABILIDAD ASINTOTICA ECUACIONES NO LINEALES FUNCIONES DE LYAPUNOV SISTEMAS TIEMPO VARIANTES TECNICAS DE PERTURBACION RESPUESTA IMPULSIVA Mancilla-Aguilar, J. L. Haimovich, Hernán (Integral-)ISS of switched and time-varying impulsive systems based on global state weak linearization |
topic_facet |
ESTABILIDAD ASINTOTICA ECUACIONES NO LINEALES FUNCIONES DE LYAPUNOV SISTEMAS TIEMPO VARIANTES TECNICAS DE PERTURBACION RESPUESTA IMPULSIVA |
description |
"It is shown that impulsive systems of nonlinear, time-varying and/or switched form that allow a stable global state weak linearization are jointly input-to-state stable (ISS) under small inputs and integral ISS (iISS). The system is said to allow a global state weak linearization if its flow and jump equations can be written as a (time-varying, switched) linear part plus a (nonlinear) pertubation satisfying a bound of affine form on the state. This bound reduces to a linear form under zero input but does not force the system to be linear under zero input. The given results generalize and extend previously existing ones in many directions: (a) no (dwell-time or other) constraints are placed on the impulse-time sequence, (b) the system need not be linear under zero input, (c) existence of a (common) Lyapunov function is not required, (d) the perturbation bound need not be linear on the input." |
format |
Artículos de Publicaciones Periódicas acceptedVersion |
author |
Mancilla-Aguilar, J. L. Haimovich, Hernán |
author_facet |
Mancilla-Aguilar, J. L. Haimovich, Hernán |
author_sort |
Mancilla-Aguilar, J. L. |
title |
(Integral-)ISS of switched and time-varying impulsive systems based on global state weak linearization |
title_short |
(Integral-)ISS of switched and time-varying impulsive systems based on global state weak linearization |
title_full |
(Integral-)ISS of switched and time-varying impulsive systems based on global state weak linearization |
title_fullStr |
(Integral-)ISS of switched and time-varying impulsive systems based on global state weak linearization |
title_full_unstemmed |
(Integral-)ISS of switched and time-varying impulsive systems based on global state weak linearization |
title_sort |
(integral-)iss of switched and time-varying impulsive systems based on global state weak linearization |
publishDate |
2022 |
url |
http://ri.itba.edu.ar/handle/123456789/3882 |
work_keys_str_mv |
AT mancillaaguilarjl integralissofswitchedandtimevaryingimpulsivesystemsbasedonglobalstateweaklinearization AT haimovichhernan integralissofswitchedandtimevaryingimpulsivesystemsbasedonglobalstateweaklinearization |
_version_ |
1765660999589822464 |