Soliton solutions and self-steepening in the photon-conserving nonlinear Schrödinger equation

"We have recently introduced a new modeling equation for the propagation of pulses in optical waveguides, the photon-conserving Nonlinear Schrödinger Equation (pcNLSE) which, unlike the canonical NLSE, guarantees strict conservation of both the energy and the number of photons for any arbitrary...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hernández, Santiago M., Bonetti, Juan I., Linale, N., Grosz, Diego, Fierens, Pablo Ignacio
Formato: Artículos de Publicaciones Periódicas acceptedVersion
Lenguaje:Inglés
Publicado: info
Materias:
Acceso en línea:http://ri.itba.edu.ar/handle/123456789/3309
Aporte de:
id I32-R138-123456789-3309
record_format dspace
spelling I32-R138-123456789-33092022-12-07T13:06:36Z Soliton solutions and self-steepening in the photon-conserving nonlinear Schrödinger equation Hernández, Santiago M. Bonetti, Juan I. Linale, N. Grosz, Diego Fierens, Pablo Ignacio SOLITONES OPTICA NO LINEAL ECUACIONES DIFERENCIALES NO LINEALES "We have recently introduced a new modeling equation for the propagation of pulses in optical waveguides, the photon-conserving Nonlinear Schrödinger Equation (pcNLSE) which, unlike the canonical NLSE, guarantees strict conservation of both the energy and the number of photons for any arbitrary frequency-dependent nonlinearity. In this paper, we analyze some properties of this new equation in the familiar case where the nonlinear coefficient of the waveguide does not change sign. We show that the pcNLSE effectively adds a correction term to the NLSE proportional to the deviation of the self-steepening (SS) parameter from the photon-conserving condition in the NLSE. Furthermore, we describe the role of the self-steepening parameter in the context of the conservation of the number of photons and derive an analytical expression for the relation of the SS parameter with the time delay experienced by pulses upon propagation. Finally, we put forth soliton-like solutions of the pcNLSE that, unlike NLSE solitons, conserve the number of photons for any arbitrary SS parameter. " info:eu-repo/date/embargoEnd/2022-01-01 2021-01-22T01:30:26Z 2021-01-22T01:30:26Z 2020-12-09 Artículos de Publicaciones Periódicas info:eu-repo/semantics/acceptedVersion 1745-5030 http://ri.itba.edu.ar/handle/123456789/3309 en info:eu-repo/semantics/altIdentifier/doi/10.1080/17455030.2020.1856970 info:eu-repo/semantics/embargoedAccess application/pdf
institution Instituto Tecnológico de Buenos Aires (ITBA)
institution_str I-32
repository_str R-138
collection Repositorio Institucional Instituto Tecnológico de Buenos Aires (ITBA)
language Inglés
topic SOLITONES
OPTICA NO LINEAL
ECUACIONES DIFERENCIALES NO LINEALES
spellingShingle SOLITONES
OPTICA NO LINEAL
ECUACIONES DIFERENCIALES NO LINEALES
Hernández, Santiago M.
Bonetti, Juan I.
Linale, N.
Grosz, Diego
Fierens, Pablo Ignacio
Soliton solutions and self-steepening in the photon-conserving nonlinear Schrödinger equation
topic_facet SOLITONES
OPTICA NO LINEAL
ECUACIONES DIFERENCIALES NO LINEALES
description "We have recently introduced a new modeling equation for the propagation of pulses in optical waveguides, the photon-conserving Nonlinear Schrödinger Equation (pcNLSE) which, unlike the canonical NLSE, guarantees strict conservation of both the energy and the number of photons for any arbitrary frequency-dependent nonlinearity. In this paper, we analyze some properties of this new equation in the familiar case where the nonlinear coefficient of the waveguide does not change sign. We show that the pcNLSE effectively adds a correction term to the NLSE proportional to the deviation of the self-steepening (SS) parameter from the photon-conserving condition in the NLSE. Furthermore, we describe the role of the self-steepening parameter in the context of the conservation of the number of photons and derive an analytical expression for the relation of the SS parameter with the time delay experienced by pulses upon propagation. Finally, we put forth soliton-like solutions of the pcNLSE that, unlike NLSE solitons, conserve the number of photons for any arbitrary SS parameter. "
format Artículos de Publicaciones Periódicas
acceptedVersion
author Hernández, Santiago M.
Bonetti, Juan I.
Linale, N.
Grosz, Diego
Fierens, Pablo Ignacio
author_facet Hernández, Santiago M.
Bonetti, Juan I.
Linale, N.
Grosz, Diego
Fierens, Pablo Ignacio
author_sort Hernández, Santiago M.
title Soliton solutions and self-steepening in the photon-conserving nonlinear Schrödinger equation
title_short Soliton solutions and self-steepening in the photon-conserving nonlinear Schrödinger equation
title_full Soliton solutions and self-steepening in the photon-conserving nonlinear Schrödinger equation
title_fullStr Soliton solutions and self-steepening in the photon-conserving nonlinear Schrödinger equation
title_full_unstemmed Soliton solutions and self-steepening in the photon-conserving nonlinear Schrödinger equation
title_sort soliton solutions and self-steepening in the photon-conserving nonlinear schrödinger equation
publishDate info
url http://ri.itba.edu.ar/handle/123456789/3309
work_keys_str_mv AT hernandezsantiagom solitonsolutionsandselfsteepeninginthephotonconservingnonlinearschrodingerequation
AT bonettijuani solitonsolutionsandselfsteepeninginthephotonconservingnonlinearschrodingerequation
AT linalen solitonsolutionsandselfsteepeninginthephotonconservingnonlinearschrodingerequation
AT groszdiego solitonsolutionsandselfsteepeninginthephotonconservingnonlinearschrodingerequation
AT fierenspabloignacio solitonsolutionsandselfsteepeninginthephotonconservingnonlinearschrodingerequation
_version_ 1765660989086236672