Soliton solutions and self-steepening in the photon-conserving nonlinear Schrödinger equation
"We have recently introduced a new modeling equation for the propagation of pulses in optical waveguides, the photon-conserving Nonlinear Schrödinger Equation (pcNLSE) which, unlike the canonical NLSE, guarantees strict conservation of both the energy and the number of photons for any arbitrary...
Guardado en:
| Autores principales: | , , , , |
|---|---|
| Formato: | Artículos de Publicaciones Periódicas acceptedVersion |
| Lenguaje: | Inglés |
| Publicado: |
info
|
| Materias: | |
| Acceso en línea: | http://ri.itba.edu.ar/handle/123456789/3309 |
| Aporte de: |
| id |
I32-R138-123456789-3309 |
|---|---|
| record_format |
dspace |
| spelling |
I32-R138-123456789-33092022-12-07T13:06:36Z Soliton solutions and self-steepening in the photon-conserving nonlinear Schrödinger equation Hernández, Santiago M. Bonetti, Juan I. Linale, N. Grosz, Diego Fierens, Pablo Ignacio SOLITONES OPTICA NO LINEAL ECUACIONES DIFERENCIALES NO LINEALES "We have recently introduced a new modeling equation for the propagation of pulses in optical waveguides, the photon-conserving Nonlinear Schrödinger Equation (pcNLSE) which, unlike the canonical NLSE, guarantees strict conservation of both the energy and the number of photons for any arbitrary frequency-dependent nonlinearity. In this paper, we analyze some properties of this new equation in the familiar case where the nonlinear coefficient of the waveguide does not change sign. We show that the pcNLSE effectively adds a correction term to the NLSE proportional to the deviation of the self-steepening (SS) parameter from the photon-conserving condition in the NLSE. Furthermore, we describe the role of the self-steepening parameter in the context of the conservation of the number of photons and derive an analytical expression for the relation of the SS parameter with the time delay experienced by pulses upon propagation. Finally, we put forth soliton-like solutions of the pcNLSE that, unlike NLSE solitons, conserve the number of photons for any arbitrary SS parameter. " info:eu-repo/date/embargoEnd/2022-01-01 2021-01-22T01:30:26Z 2021-01-22T01:30:26Z 2020-12-09 Artículos de Publicaciones Periódicas info:eu-repo/semantics/acceptedVersion 1745-5030 http://ri.itba.edu.ar/handle/123456789/3309 en info:eu-repo/semantics/altIdentifier/doi/10.1080/17455030.2020.1856970 info:eu-repo/semantics/embargoedAccess application/pdf |
| institution |
Instituto Tecnológico de Buenos Aires (ITBA) |
| institution_str |
I-32 |
| repository_str |
R-138 |
| collection |
Repositorio Institucional Instituto Tecnológico de Buenos Aires (ITBA) |
| language |
Inglés |
| topic |
SOLITONES OPTICA NO LINEAL ECUACIONES DIFERENCIALES NO LINEALES |
| spellingShingle |
SOLITONES OPTICA NO LINEAL ECUACIONES DIFERENCIALES NO LINEALES Hernández, Santiago M. Bonetti, Juan I. Linale, N. Grosz, Diego Fierens, Pablo Ignacio Soliton solutions and self-steepening in the photon-conserving nonlinear Schrödinger equation |
| topic_facet |
SOLITONES OPTICA NO LINEAL ECUACIONES DIFERENCIALES NO LINEALES |
| description |
"We have recently introduced a new modeling equation for the propagation of pulses in optical waveguides, the photon-conserving Nonlinear Schrödinger Equation (pcNLSE) which, unlike the canonical NLSE, guarantees strict conservation of both the energy and the number of photons for any arbitrary frequency-dependent nonlinearity. In this paper, we analyze some properties of this new equation in the familiar case where the nonlinear coefficient of the waveguide does not change sign. We show that the pcNLSE effectively adds a correction term to the NLSE proportional to the deviation of the self-steepening (SS) parameter from the photon-conserving condition in the NLSE. Furthermore, we describe the role of the self-steepening parameter in the context of the conservation of the number of photons and derive an analytical expression for the relation of the SS parameter with the time delay experienced by pulses upon propagation. Finally, we put forth soliton-like solutions of the pcNLSE that, unlike NLSE solitons, conserve the number of photons for any arbitrary SS parameter. " |
| format |
Artículos de Publicaciones Periódicas acceptedVersion |
| author |
Hernández, Santiago M. Bonetti, Juan I. Linale, N. Grosz, Diego Fierens, Pablo Ignacio |
| author_facet |
Hernández, Santiago M. Bonetti, Juan I. Linale, N. Grosz, Diego Fierens, Pablo Ignacio |
| author_sort |
Hernández, Santiago M. |
| title |
Soliton solutions and self-steepening in the photon-conserving nonlinear Schrödinger equation |
| title_short |
Soliton solutions and self-steepening in the photon-conserving nonlinear Schrödinger equation |
| title_full |
Soliton solutions and self-steepening in the photon-conserving nonlinear Schrödinger equation |
| title_fullStr |
Soliton solutions and self-steepening in the photon-conserving nonlinear Schrödinger equation |
| title_full_unstemmed |
Soliton solutions and self-steepening in the photon-conserving nonlinear Schrödinger equation |
| title_sort |
soliton solutions and self-steepening in the photon-conserving nonlinear schrödinger equation |
| publishDate |
info |
| url |
http://ri.itba.edu.ar/handle/123456789/3309 |
| work_keys_str_mv |
AT hernandezsantiagom solitonsolutionsandselfsteepeninginthephotonconservingnonlinearschrodingerequation AT bonettijuani solitonsolutionsandselfsteepeninginthephotonconservingnonlinearschrodingerequation AT linalen solitonsolutionsandselfsteepeninginthephotonconservingnonlinearschrodingerequation AT groszdiego solitonsolutionsandselfsteepeninginthephotonconservingnonlinearschrodingerequation AT fierenspabloignacio solitonsolutionsandselfsteepeninginthephotonconservingnonlinearschrodingerequation |
| _version_ |
1765660989086236672 |