Modelling and querying star and snowflake warehouses using graph databases
"In current “Big Data” scenarios, graph databases are increasingly being used. Online Analytical Processing (OLAP) operations can expand the possibilities of graph analysis beyond the traditional graphbased computation. This paper studies graph databases as an alternative to implement star and...
Autores principales: | , , |
---|---|
Formato: | Ponencias en Congresos acceptedVersion |
Lenguaje: | Inglés |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | http://ri.itba.edu.ar/handle/123456789/2231 |
Aporte de: |
id |
I32-R138-123456789-2231 |
---|---|
record_format |
dspace |
spelling |
I32-R138-123456789-22312022-12-07T14:13:47Z Modelling and querying star and snowflake warehouses using graph databases Vaisman, Alejandro Ariel Besteiro, María Florencia Valverde Melito, Maximiliano Javier ALMACENES DE DATOS BASES DE DATOS ORIENTADAS A GRAFOS SISTEMAS DE INFORMACION ANALISIS DE DATOS OLAP "In current “Big Data” scenarios, graph databases are increasingly being used. Online Analytical Processing (OLAP) operations can expand the possibilities of graph analysis beyond the traditional graphbased computation. This paper studies graph databases as an alternative to implement star and snowflake schemas, the typical choices for data warehouse design. For this, the MusicBrainz database is used. A data warehouse for this database is designed, and implemented over a Postgres relational database. This warehouse is also represented as a graph, and implemented over the Neo4j graph database. A collection of typical OLAP queries is used to compare both implementations. The results reported here show that in ten out of thirteen queries tested, the graph implementation outperforms the relational one, in ratios that go from 1.3 to 26 times faster, and performs similarly to the relational implementation in the three remaining cases." 2020-06-26T20:51:31Z 2020-06-26T20:51:31Z 2019 Ponencias en Congresos info:eu-repo/semantics/acceptedVersion 978-3030-302-77-1 1865-0929 http://ri.itba.edu.ar/handle/123456789/2231 en info:eu-repo/grantAgreement/ANPCyT/PICT/2017-1054/AR. Ciudad Autónoma de Buenos Aires info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-030-30278-8_18 application/pdf |
institution |
Instituto Tecnológico de Buenos Aires (ITBA) |
institution_str |
I-32 |
repository_str |
R-138 |
collection |
Repositorio Institucional Instituto Tecnológico de Buenos Aires (ITBA) |
language |
Inglés |
topic |
ALMACENES DE DATOS BASES DE DATOS ORIENTADAS A GRAFOS SISTEMAS DE INFORMACION ANALISIS DE DATOS OLAP |
spellingShingle |
ALMACENES DE DATOS BASES DE DATOS ORIENTADAS A GRAFOS SISTEMAS DE INFORMACION ANALISIS DE DATOS OLAP Vaisman, Alejandro Ariel Besteiro, María Florencia Valverde Melito, Maximiliano Javier Modelling and querying star and snowflake warehouses using graph databases |
topic_facet |
ALMACENES DE DATOS BASES DE DATOS ORIENTADAS A GRAFOS SISTEMAS DE INFORMACION ANALISIS DE DATOS OLAP |
description |
"In current “Big Data” scenarios, graph databases are increasingly being used. Online Analytical Processing (OLAP) operations can expand the possibilities of graph analysis beyond the traditional graphbased computation. This paper studies graph databases as an alternative to implement star and snowflake schemas, the typical choices for data warehouse design. For this, the MusicBrainz database is used. A data warehouse for this database is designed, and implemented over a Postgres relational database. This warehouse is also represented as a graph, and implemented over the Neo4j graph database. A collection of typical OLAP queries is used to compare both implementations. The results reported here show that in ten out of thirteen queries tested, the graph implementation outperforms the relational one, in ratios that go from 1.3 to 26 times faster, and performs similarly to the relational implementation in the three remaining cases." |
format |
Ponencias en Congresos acceptedVersion |
author |
Vaisman, Alejandro Ariel Besteiro, María Florencia Valverde Melito, Maximiliano Javier |
author_facet |
Vaisman, Alejandro Ariel Besteiro, María Florencia Valverde Melito, Maximiliano Javier |
author_sort |
Vaisman, Alejandro Ariel |
title |
Modelling and querying star and snowflake warehouses using graph databases |
title_short |
Modelling and querying star and snowflake warehouses using graph databases |
title_full |
Modelling and querying star and snowflake warehouses using graph databases |
title_fullStr |
Modelling and querying star and snowflake warehouses using graph databases |
title_full_unstemmed |
Modelling and querying star and snowflake warehouses using graph databases |
title_sort |
modelling and querying star and snowflake warehouses using graph databases |
publishDate |
2020 |
url |
http://ri.itba.edu.ar/handle/123456789/2231 |
work_keys_str_mv |
AT vaismanalejandroariel modellingandqueryingstarandsnowflakewarehousesusinggraphdatabases AT besteiromariaflorencia modellingandqueryingstarandsnowflakewarehousesusinggraphdatabases AT valverdemelitomaximilianojavier modellingandqueryingstarandsnowflakewarehousesusinggraphdatabases |
_version_ |
1765661100930498560 |