Epilepsy seizure onset detection applying 1-NN classifier based on statistical parameters
"Epilepsy is a disease caused by an excessive discharge of a group of neurons in the cerebral cortex. Extracting this information using EEG signals is an ongoing challenge in biomedical signal processing. In this paper, a new method is proposed for onset seizure detection in epileptic EEG sign...
Guardado en:
| Autores principales: | , , , , , |
|---|---|
| Formato: | Ponencias en Congresos acceptedVersion |
| Lenguaje: | Inglés |
| Publicado: |
2020
|
| Materias: | |
| Acceso en línea: | http://ri.itba.edu.ar/handle/123456789/1855 |
| Aporte de: |
| id |
I32-R138-123456789-1855 |
|---|---|
| record_format |
dspace |
| spelling |
I32-R138-123456789-18552022-12-07T14:14:00Z Epilepsy seizure onset detection applying 1-NN classifier based on statistical parameters Zorgno, Ivanna Blanc, María Cecilia Oxenford, Simón Gil Garbagnoli, Francisco D'Giano, Carlos Quintero-Rincón, Antonio ELECTROENCEFALOGRAFIA PROCESAMIENTO DE SEÑALES DIGITALES EPILEPSIA "Epilepsy is a disease caused by an excessive discharge of a group of neurons in the cerebral cortex. Extracting this information using EEG signals is an ongoing challenge in biomedical signal processing. In this paper, a new method is proposed for onset seizure detection in epileptic EEG signals based on parameters from the t-location-scale distribution coupled with the variance and the Pearson correlation coefficient. The 1-nearest neighbor classifier achieved a 91% sensitivity (True positive rate) and 95% specificity (True Negative Rate) with a delay of 4.5 seconds (on average) in the 45 signals analyzed, which suggests that the proposed methodology is potentially useful for seizure onset detection in epileptic EEG signals." 2020-01-06T18:17:18Z 2020-01-06T18:17:18Z 2018 Ponencias en Congresos info:eu-repo/semantics/acceptedVersion http://ri.itba.edu.ar/handle/123456789/1855 en info:eu-repo/grantAgreement/ITBA/INICIACIÓN/2017/AR. Ciudad Autónoma de Buenos Aires info:eu-repo/semantics/altIdentifier/10.1109/ARGENCON.2018.8646234 application/pdf |
| institution |
Instituto Tecnológico de Buenos Aires (ITBA) |
| institution_str |
I-32 |
| repository_str |
R-138 |
| collection |
Repositorio Institucional Instituto Tecnológico de Buenos Aires (ITBA) |
| language |
Inglés |
| topic |
ELECTROENCEFALOGRAFIA PROCESAMIENTO DE SEÑALES DIGITALES EPILEPSIA |
| spellingShingle |
ELECTROENCEFALOGRAFIA PROCESAMIENTO DE SEÑALES DIGITALES EPILEPSIA Zorgno, Ivanna Blanc, María Cecilia Oxenford, Simón Gil Garbagnoli, Francisco D'Giano, Carlos Quintero-Rincón, Antonio Epilepsy seizure onset detection applying 1-NN classifier based on statistical parameters |
| topic_facet |
ELECTROENCEFALOGRAFIA PROCESAMIENTO DE SEÑALES DIGITALES EPILEPSIA |
| description |
"Epilepsy is a disease caused by an excessive discharge of a group of neurons in the cerebral cortex.
Extracting this information using EEG signals is an ongoing challenge in biomedical signal processing. In this paper, a new method is proposed for onset seizure detection in epileptic EEG signals based on parameters from the t-location-scale distribution coupled with the variance and the Pearson
correlation coefficient. The 1-nearest neighbor classifier achieved a 91% sensitivity (True positive rate) and 95% specificity (True Negative Rate) with a delay of 4.5 seconds (on average) in the 45 signals analyzed, which suggests that the proposed methodology is potentially useful for seizure
onset detection in epileptic EEG signals." |
| format |
Ponencias en Congresos acceptedVersion |
| author |
Zorgno, Ivanna Blanc, María Cecilia Oxenford, Simón Gil Garbagnoli, Francisco D'Giano, Carlos Quintero-Rincón, Antonio |
| author_facet |
Zorgno, Ivanna Blanc, María Cecilia Oxenford, Simón Gil Garbagnoli, Francisco D'Giano, Carlos Quintero-Rincón, Antonio |
| author_sort |
Zorgno, Ivanna |
| title |
Epilepsy seizure onset detection applying 1-NN classifier based on statistical parameters |
| title_short |
Epilepsy seizure onset detection applying 1-NN classifier based on statistical parameters |
| title_full |
Epilepsy seizure onset detection applying 1-NN classifier based on statistical parameters |
| title_fullStr |
Epilepsy seizure onset detection applying 1-NN classifier based on statistical parameters |
| title_full_unstemmed |
Epilepsy seizure onset detection applying 1-NN classifier based on statistical parameters |
| title_sort |
epilepsy seizure onset detection applying 1-nn classifier based on statistical parameters |
| publishDate |
2020 |
| url |
http://ri.itba.edu.ar/handle/123456789/1855 |
| work_keys_str_mv |
AT zorgnoivanna epilepsyseizureonsetdetectionapplying1nnclassifierbasedonstatisticalparameters AT blancmariacecilia epilepsyseizureonsetdetectionapplying1nnclassifierbasedonstatisticalparameters AT oxenfordsimon epilepsyseizureonsetdetectionapplying1nnclassifierbasedonstatisticalparameters AT gilgarbagnolifrancisco epilepsyseizureonsetdetectionapplying1nnclassifierbasedonstatisticalparameters AT dgianocarlos epilepsyseizureonsetdetectionapplying1nnclassifierbasedonstatisticalparameters AT quinterorinconantonio epilepsyseizureonsetdetectionapplying1nnclassifierbasedonstatisticalparameters |
| _version_ |
1765661037780008960 |