Quasi-analytical perturbation analysis of the generalized nonlinear Schrödinger equation

"The Generalized Nonlinear Schrödinger Equation (GNLSE) finds several applications, especially in describing pulse propagation in nonlinear fiber optics. A well-known and thoroughly studied phenomenon in nonlinear wave propagation is that of modulation instability (MI). MI is approached as a we...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Bonetti, Juan I., Hernández, Santiago M., Fierens, Pablo Ignacio, Temprana, Eduardo G., Grosz, Diego
Formato: Artículos de Publicaciones Periódicas acceptedVersion
Lenguaje:Inglés
Publicado: 2019
Materias:
Acceso en línea:http://ri.itba.edu.ar/handle/123456789/1805
Aporte de:
id I32-R138-123456789-1805
record_format dspace
spelling I32-R138-123456789-18052022-12-07T13:06:36Z Quasi-analytical perturbation analysis of the generalized nonlinear Schrödinger equation Bonetti, Juan I. Hernández, Santiago M. Fierens, Pablo Ignacio Temprana, Eduardo G. Grosz, Diego PERTURBACION ONDAS MODULACION FIBRAS OPTICAS ECUACIONES DE SCHRÖDINGER "The Generalized Nonlinear Schrödinger Equation (GNLSE) finds several applications, especially in describing pulse propagation in nonlinear fiber optics. A well-known and thoroughly studied phenomenon in nonlinear wave propagation is that of modulation instability (MI). MI is approached as a weak perturbation to a pump and the analysis is based on preserving those terms linear on the perturbation and disregarding higher-order terms. In this sense, the linear MI analysis is relevant to the understanding of the onset of many other nonlinear phenomena, but its application is limited to the evolution of the perturbation over short distances. In this work, we propose quasi-analytical approximations to the propagation of a perturbation consisting of additive white noise that go beyond the linear modulation instability analysis. Moreover, we show these approximations to be in excellent agreement with numerical simulations and experimental measurements. " 2019-10-24T14:33:09Z 2019-10-24T14:33:09Z 2019 Artículos de Publicaciones Periódicas info:eu-repo/semantics/acceptedVersion 1860-0832 http://ri.itba.edu.ar/handle/123456789/1805 en info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-030-10892-2_24 info:eu-repo/grantAgreement/FONCyT/PI2015/AR. Ciudad Autónoma de Buenos Aires info:eu-repo/grantAgreement/ONR Global/Visiting Scientists Program/ application/pdf
institution Instituto Tecnológico de Buenos Aires (ITBA)
institution_str I-32
repository_str R-138
collection Repositorio Institucional Instituto Tecnológico de Buenos Aires (ITBA)
language Inglés
topic PERTURBACION
ONDAS
MODULACION
FIBRAS OPTICAS
ECUACIONES DE SCHRÖDINGER
spellingShingle PERTURBACION
ONDAS
MODULACION
FIBRAS OPTICAS
ECUACIONES DE SCHRÖDINGER
Bonetti, Juan I.
Hernández, Santiago M.
Fierens, Pablo Ignacio
Temprana, Eduardo G.
Grosz, Diego
Quasi-analytical perturbation analysis of the generalized nonlinear Schrödinger equation
topic_facet PERTURBACION
ONDAS
MODULACION
FIBRAS OPTICAS
ECUACIONES DE SCHRÖDINGER
description "The Generalized Nonlinear Schrödinger Equation (GNLSE) finds several applications, especially in describing pulse propagation in nonlinear fiber optics. A well-known and thoroughly studied phenomenon in nonlinear wave propagation is that of modulation instability (MI). MI is approached as a weak perturbation to a pump and the analysis is based on preserving those terms linear on the perturbation and disregarding higher-order terms. In this sense, the linear MI analysis is relevant to the understanding of the onset of many other nonlinear phenomena, but its application is limited to the evolution of the perturbation over short distances. In this work, we propose quasi-analytical approximations to the propagation of a perturbation consisting of additive white noise that go beyond the linear modulation instability analysis. Moreover, we show these approximations to be in excellent agreement with numerical simulations and experimental measurements. "
format Artículos de Publicaciones Periódicas
acceptedVersion
author Bonetti, Juan I.
Hernández, Santiago M.
Fierens, Pablo Ignacio
Temprana, Eduardo G.
Grosz, Diego
author_facet Bonetti, Juan I.
Hernández, Santiago M.
Fierens, Pablo Ignacio
Temprana, Eduardo G.
Grosz, Diego
author_sort Bonetti, Juan I.
title Quasi-analytical perturbation analysis of the generalized nonlinear Schrödinger equation
title_short Quasi-analytical perturbation analysis of the generalized nonlinear Schrödinger equation
title_full Quasi-analytical perturbation analysis of the generalized nonlinear Schrödinger equation
title_fullStr Quasi-analytical perturbation analysis of the generalized nonlinear Schrödinger equation
title_full_unstemmed Quasi-analytical perturbation analysis of the generalized nonlinear Schrödinger equation
title_sort quasi-analytical perturbation analysis of the generalized nonlinear schrödinger equation
publishDate 2019
url http://ri.itba.edu.ar/handle/123456789/1805
work_keys_str_mv AT bonettijuani quasianalyticalperturbationanalysisofthegeneralizednonlinearschrodingerequation
AT hernandezsantiagom quasianalyticalperturbationanalysisofthegeneralizednonlinearschrodingerequation
AT fierenspabloignacio quasianalyticalperturbationanalysisofthegeneralizednonlinearschrodingerequation
AT tempranaeduardog quasianalyticalperturbationanalysisofthegeneralizednonlinearschrodingerequation
AT groszdiego quasianalyticalperturbationanalysisofthegeneralizednonlinearschrodingerequation
_version_ 1765660762555023360