Quasi-analytical perturbation analysis of the generalized nonlinear Schrödinger equation
"The Generalized Nonlinear Schrödinger Equation (GNLSE) finds several applications, especially in describing pulse propagation in nonlinear fiber optics. A well-known and thoroughly studied phenomenon in nonlinear wave propagation is that of modulation instability (MI). MI is approached as a we...
Guardado en:
| Autores principales: | , , , , |
|---|---|
| Formato: | Artículos de Publicaciones Periódicas acceptedVersion |
| Lenguaje: | Inglés |
| Publicado: |
2019
|
| Materias: | |
| Acceso en línea: | http://ri.itba.edu.ar/handle/123456789/1805 |
| Aporte de: |
| id |
I32-R138-123456789-1805 |
|---|---|
| record_format |
dspace |
| spelling |
I32-R138-123456789-18052022-12-07T13:06:36Z Quasi-analytical perturbation analysis of the generalized nonlinear Schrödinger equation Bonetti, Juan I. Hernández, Santiago M. Fierens, Pablo Ignacio Temprana, Eduardo G. Grosz, Diego PERTURBACION ONDAS MODULACION FIBRAS OPTICAS ECUACIONES DE SCHRÖDINGER "The Generalized Nonlinear Schrödinger Equation (GNLSE) finds several applications, especially in describing pulse propagation in nonlinear fiber optics. A well-known and thoroughly studied phenomenon in nonlinear wave propagation is that of modulation instability (MI). MI is approached as a weak perturbation to a pump and the analysis is based on preserving those terms linear on the perturbation and disregarding higher-order terms. In this sense, the linear MI analysis is relevant to the understanding of the onset of many other nonlinear phenomena, but its application is limited to the evolution of the perturbation over short distances. In this work, we propose quasi-analytical approximations to the propagation of a perturbation consisting of additive white noise that go beyond the linear modulation instability analysis. Moreover, we show these approximations to be in excellent agreement with numerical simulations and experimental measurements. " 2019-10-24T14:33:09Z 2019-10-24T14:33:09Z 2019 Artículos de Publicaciones Periódicas info:eu-repo/semantics/acceptedVersion 1860-0832 http://ri.itba.edu.ar/handle/123456789/1805 en info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-030-10892-2_24 info:eu-repo/grantAgreement/FONCyT/PI2015/AR. Ciudad Autónoma de Buenos Aires info:eu-repo/grantAgreement/ONR Global/Visiting Scientists Program/ application/pdf |
| institution |
Instituto Tecnológico de Buenos Aires (ITBA) |
| institution_str |
I-32 |
| repository_str |
R-138 |
| collection |
Repositorio Institucional Instituto Tecnológico de Buenos Aires (ITBA) |
| language |
Inglés |
| topic |
PERTURBACION ONDAS MODULACION FIBRAS OPTICAS ECUACIONES DE SCHRÖDINGER |
| spellingShingle |
PERTURBACION ONDAS MODULACION FIBRAS OPTICAS ECUACIONES DE SCHRÖDINGER Bonetti, Juan I. Hernández, Santiago M. Fierens, Pablo Ignacio Temprana, Eduardo G. Grosz, Diego Quasi-analytical perturbation analysis of the generalized nonlinear Schrödinger equation |
| topic_facet |
PERTURBACION ONDAS MODULACION FIBRAS OPTICAS ECUACIONES DE SCHRÖDINGER |
| description |
"The Generalized Nonlinear Schrödinger Equation (GNLSE) finds several applications, especially in describing pulse propagation in nonlinear fiber optics. A well-known and thoroughly studied phenomenon in nonlinear wave propagation is that of modulation instability (MI). MI is approached as a weak perturbation to a pump and the analysis is based on preserving those terms linear on the perturbation and disregarding higher-order terms. In this sense, the linear MI analysis is relevant to the understanding of the onset of many other nonlinear phenomena, but its application is limited to the evolution of the perturbation over short distances. In this work, we propose quasi-analytical approximations to the propagation of a perturbation consisting of additive white noise that go beyond the linear modulation instability analysis. Moreover, we show these approximations to be in excellent agreement with numerical simulations and experimental measurements. " |
| format |
Artículos de Publicaciones Periódicas acceptedVersion |
| author |
Bonetti, Juan I. Hernández, Santiago M. Fierens, Pablo Ignacio Temprana, Eduardo G. Grosz, Diego |
| author_facet |
Bonetti, Juan I. Hernández, Santiago M. Fierens, Pablo Ignacio Temprana, Eduardo G. Grosz, Diego |
| author_sort |
Bonetti, Juan I. |
| title |
Quasi-analytical perturbation analysis of the generalized nonlinear Schrödinger equation |
| title_short |
Quasi-analytical perturbation analysis of the generalized nonlinear Schrödinger equation |
| title_full |
Quasi-analytical perturbation analysis of the generalized nonlinear Schrödinger equation |
| title_fullStr |
Quasi-analytical perturbation analysis of the generalized nonlinear Schrödinger equation |
| title_full_unstemmed |
Quasi-analytical perturbation analysis of the generalized nonlinear Schrödinger equation |
| title_sort |
quasi-analytical perturbation analysis of the generalized nonlinear schrödinger equation |
| publishDate |
2019 |
| url |
http://ri.itba.edu.ar/handle/123456789/1805 |
| work_keys_str_mv |
AT bonettijuani quasianalyticalperturbationanalysisofthegeneralizednonlinearschrodingerequation AT hernandezsantiagom quasianalyticalperturbationanalysisofthegeneralizednonlinearschrodingerequation AT fierenspabloignacio quasianalyticalperturbationanalysisofthegeneralizednonlinearschrodingerequation AT tempranaeduardog quasianalyticalperturbationanalysisofthegeneralizednonlinearschrodingerequation AT groszdiego quasianalyticalperturbationanalysisofthegeneralizednonlinearschrodingerequation |
| _version_ |
1765660762555023360 |