Diseño e implementación de un neuroprocesador
"En las últimas décadas el desarrollo de la teoría e implementación de sistemas de control no-lineal ha sido vertiginoso. Una de las técnicas que se ha promovido es la de control neuronal. Se denomina control neuronal a cualquier topología de control que incluya redes neuronales. Si bien estas...
Autores principales: | , |
---|---|
Otros Autores: | |
Formato: | Proyecto Final de Grado |
Lenguaje: | Español |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | http://ri.itba.edu.ar/handle/123456789/179 |
Aporte de: |
id |
I32-R138-123456789-179 |
---|---|
record_format |
dspace |
spelling |
I32-R138-123456789-1792022-12-07T14:34:13Z Diseño e implementación de un neuroprocesador Angélico Engelhardt, Mathias Cassano, Lucas César Eduardo Lerendegui, Norberto Marcelo SISTEMAS DE CONTROL REDES NEURONALES INGENIERIA ELECTRONICA "En las últimas décadas el desarrollo de la teoría e implementación de sistemas de control no-lineal ha sido vertiginoso. Una de las técnicas que se ha promovido es la de control neuronal. Se denomina control neuronal a cualquier topología de control que incluya redes neuronales. Si bien estas estrategias son efectivas para situaciones donde se tiene un pobre conocimiento de la planta y/o la planta es tiempo variante, el uso de redes neuronales demanda una gran cantidad de cálculos. Las implementaciones en software, que usualmente son secuenciales, no logran aprovechar el paralelismo inherente que poseen las redes. Como alternativa, algunos investigadores recurren a implementaciones en hardware para una aplicación de control específica, lo que resulta caro y requiere demasiado tiempo de desarrollo. En el presente informe se detalla el desarrollo de un novedoso co-procesador para implementar redes neuronales, que si bien puede ser utilizado en otras áreas, se ha diseñado y optimizado para aplicaciones de control e identificación de modelos. El dispositivo desarrollado pretende ser una herramienta versátil, económica y de fácil uso para el ingeniero, explotando el paralelismo de las redes neuronales. Su estructura configurable permite implementar dos red es de topología RBF (Radial Basis Function) con funciones gaussianas, un máximo de 128 neuronas ocultas, 16 entradas y una salida en punto flotante de 32 bits, donde todos los parámetros pueden ser actualizados on-line. El dispositivo permite modificar la estructura de la red y acceder a la memoria interna para obtener los pesos, centros y desvíos en cada paso del algoritmo. Para validar el diseño se utilizó una FPGA Cyclone IVE de Altera. En el caso extremo, implementando dos redes de máximo tamaño y actualizando todos sus parámetros, el procesador puede operar a una frecuencia de hasta 3,66 kHz, desarrollando 51,32 MCPS y 24,36 MCUPS (C[U]PS: Con nection [Updates] PerSecond), lo que permite controlar plantas rápidas." Proyecto final Ingeniería Electrónica (grado) - Instituto Tecnológico de Buenos Aires, Buenos Aires, 2014 2016-12-06T03:33:59Z 2016-12-06T03:33:59Z 2014 Proyecto Final de Grado http://ri.itba.edu.ar/handle/123456789/179 es application/octet-stream |
institution |
Instituto Tecnológico de Buenos Aires (ITBA) |
institution_str |
I-32 |
repository_str |
R-138 |
collection |
Repositorio Institucional Instituto Tecnológico de Buenos Aires (ITBA) |
language |
Español |
topic |
SISTEMAS DE CONTROL REDES NEURONALES INGENIERIA ELECTRONICA |
spellingShingle |
SISTEMAS DE CONTROL REDES NEURONALES INGENIERIA ELECTRONICA Angélico Engelhardt, Mathias Cassano, Lucas César Eduardo Diseño e implementación de un neuroprocesador |
topic_facet |
SISTEMAS DE CONTROL REDES NEURONALES INGENIERIA ELECTRONICA |
description |
"En las últimas décadas el desarrollo de la teoría e implementación de sistemas de control no-lineal ha sido vertiginoso. Una de las técnicas que se ha promovido es la de control neuronal. Se denomina control neuronal a cualquier topología de control que incluya redes neuronales. Si bien estas estrategias son efectivas para situaciones donde se tiene un pobre conocimiento de la planta y/o la planta es tiempo variante, el uso de redes neuronales demanda una gran cantidad de cálculos. Las implementaciones en software, que usualmente son secuenciales, no logran aprovechar el paralelismo inherente que poseen las redes. Como alternativa, algunos investigadores recurren a implementaciones en
hardware para una aplicación de control específica, lo que resulta caro y requiere demasiado tiempo de desarrollo.
En el presente informe se detalla el desarrollo de un novedoso co-procesador para implementar redes neuronales, que si bien puede ser utilizado en otras áreas, se ha diseñado y optimizado para aplicaciones de control e identificación de modelos. El
dispositivo desarrollado pretende ser una herramienta versátil, económica y de fácil uso para el ingeniero, explotando el paralelismo de las redes neuronales. Su estructura configurable permite implementar dos red es de topología RBF (Radial Basis
Function) con funciones gaussianas, un máximo de 128 neuronas ocultas, 16 entradas y una salida en punto flotante de 32 bits, donde todos los parámetros pueden ser actualizados on-line. El dispositivo permite modificar la estructura de la red y acceder a la memoria interna para obtener los pesos, centros
y desvíos en cada paso del algoritmo.
Para validar el diseño se utilizó una FPGA Cyclone IVE de Altera. En el caso extremo, implementando dos redes de máximo tamaño y actualizando todos sus parámetros, el procesador puede operar a una frecuencia de hasta 3,66 kHz,
desarrollando 51,32 MCPS y 24,36 MCUPS (C[U]PS: Con
nection [Updates] PerSecond), lo que permite controlar plantas rápidas." |
author2 |
Lerendegui, Norberto Marcelo |
author_facet |
Lerendegui, Norberto Marcelo Angélico Engelhardt, Mathias Cassano, Lucas César Eduardo |
format |
Proyecto Final de Grado |
author |
Angélico Engelhardt, Mathias Cassano, Lucas César Eduardo |
author_sort |
Angélico Engelhardt, Mathias |
title |
Diseño e implementación de un neuroprocesador |
title_short |
Diseño e implementación de un neuroprocesador |
title_full |
Diseño e implementación de un neuroprocesador |
title_fullStr |
Diseño e implementación de un neuroprocesador |
title_full_unstemmed |
Diseño e implementación de un neuroprocesador |
title_sort |
diseño e implementación de un neuroprocesador |
publishDate |
2016 |
url |
http://ri.itba.edu.ar/handle/123456789/179 |
work_keys_str_mv |
AT angelicoengelhardtmathias disenoeimplementaciondeunneuroprocesador AT cassanolucascesareduardo disenoeimplementaciondeunneuroprocesador |
_version_ |
1765660913024630784 |