A visual EEG epilepsy detection method based on a wavelet statistical representation and the Kullback-Leibler divergence
"This paper presents a statistical signal processing method for the characterization of EEG of patients suffering from epilepsy. A statistical model is proposed for the signals and the Kullback-Leibler divergence is used to study the differences between Seizure/Non-Seizure in patients suffering...
Autores principales: | , , , , |
---|---|
Formato: | Ponencias en Congresos acceptedVersion |
Lenguaje: | Inglés |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | http://ri.itba.edu.ar/handle/123456789/1751 |
Aporte de: |
id |
I32-R138-123456789-1751 |
---|---|
record_format |
dspace |
spelling |
I32-R138-123456789-17512022-12-07T14:13:48Z A visual EEG epilepsy detection method based on a wavelet statistical representation and the Kullback-Leibler divergence Quintero-Rincón, Antonio Pereyra, Marcelo D'Giano, Carlos Batatia, Hadj Risk, Marcelo ELECTROENCEFALOGRAFIA PROCESAMIENTO DE SEÑALES ESTADISTICA EPILEPSIA MODELOS MATEMATICOS "This paper presents a statistical signal processing method for the characterization of EEG of patients suffering from epilepsy. A statistical model is proposed for the signals and the Kullback-Leibler divergence is used to study the differences between Seizure/Non-Seizure in patients suffering from epilepsy. Precisely, EEG signals are transformed into multivariate coefficients through multilevel 1D wavelet decomposition of different brain frequencies. The generalized Gaussian distribution (GGD) is shown to model precisely these coefficients. Patients are compared based on the analytical development of Kullback-Leibler divergence (KLD) of their corresponding GGD distributions. The method has been applied to a dataset of 18 epileptic signals of 9 patients. Results show a clear discrepancy between Seizure/Non-Seizure in epileptic signals, which helps in determining the onset of the seizure." 2019-09-12T17:11:58Z 2019-09-12T17:11:58Z 2017-10 Ponencias en Congresos info:eu-repo/semantics/acceptedVersion 1680-0737 http://ri.itba.edu.ar/handle/123456789/1751 en info:eu-repo/semantics/altIdentifier/doi/10.1007/978-981-10-4086-3_4 info:eu-repo/grantAgreement/EPSRC/EP/D063485/1/UK. Swindon info:eu-repo/grantAgreement/ITBA/ITBACyT/AR. Ciudad de Buenos Aires info:eu-repo/grantAgreement/FLENI/Protocolo/07/15/AR. Ciudad de Buenos Aires application/pdf |
institution |
Instituto Tecnológico de Buenos Aires (ITBA) |
institution_str |
I-32 |
repository_str |
R-138 |
collection |
Repositorio Institucional Instituto Tecnológico de Buenos Aires (ITBA) |
language |
Inglés |
topic |
ELECTROENCEFALOGRAFIA PROCESAMIENTO DE SEÑALES ESTADISTICA EPILEPSIA MODELOS MATEMATICOS |
spellingShingle |
ELECTROENCEFALOGRAFIA PROCESAMIENTO DE SEÑALES ESTADISTICA EPILEPSIA MODELOS MATEMATICOS Quintero-Rincón, Antonio Pereyra, Marcelo D'Giano, Carlos Batatia, Hadj Risk, Marcelo A visual EEG epilepsy detection method based on a wavelet statistical representation and the Kullback-Leibler divergence |
topic_facet |
ELECTROENCEFALOGRAFIA PROCESAMIENTO DE SEÑALES ESTADISTICA EPILEPSIA MODELOS MATEMATICOS |
description |
"This paper presents a statistical signal processing method for the characterization of EEG of patients suffering from epilepsy. A statistical model is proposed for the signals and the Kullback-Leibler divergence is used to study the differences between Seizure/Non-Seizure in patients suffering from epilepsy. Precisely, EEG signals are transformed into multivariate coefficients through multilevel 1D wavelet decomposition of different brain frequencies. The generalized Gaussian distribution (GGD) is shown to model precisely these coefficients. Patients are compared based on the analytical development of Kullback-Leibler divergence (KLD) of their corresponding GGD distributions. The method has been applied to a dataset of 18 epileptic signals of 9 patients. Results show a clear discrepancy between Seizure/Non-Seizure in epileptic signals, which helps in determining the onset of the seizure." |
format |
Ponencias en Congresos acceptedVersion |
author |
Quintero-Rincón, Antonio Pereyra, Marcelo D'Giano, Carlos Batatia, Hadj Risk, Marcelo |
author_facet |
Quintero-Rincón, Antonio Pereyra, Marcelo D'Giano, Carlos Batatia, Hadj Risk, Marcelo |
author_sort |
Quintero-Rincón, Antonio |
title |
A visual EEG epilepsy detection method based on a wavelet statistical representation and the Kullback-Leibler divergence |
title_short |
A visual EEG epilepsy detection method based on a wavelet statistical representation and the Kullback-Leibler divergence |
title_full |
A visual EEG epilepsy detection method based on a wavelet statistical representation and the Kullback-Leibler divergence |
title_fullStr |
A visual EEG epilepsy detection method based on a wavelet statistical representation and the Kullback-Leibler divergence |
title_full_unstemmed |
A visual EEG epilepsy detection method based on a wavelet statistical representation and the Kullback-Leibler divergence |
title_sort |
visual eeg epilepsy detection method based on a wavelet statistical representation and the kullback-leibler divergence |
publishDate |
2019 |
url |
http://ri.itba.edu.ar/handle/123456789/1751 |
work_keys_str_mv |
AT quinterorinconantonio avisualeegepilepsydetectionmethodbasedonawaveletstatisticalrepresentationandthekullbackleiblerdivergence AT pereyramarcelo avisualeegepilepsydetectionmethodbasedonawaveletstatisticalrepresentationandthekullbackleiblerdivergence AT dgianocarlos avisualeegepilepsydetectionmethodbasedonawaveletstatisticalrepresentationandthekullbackleiblerdivergence AT batatiahadj avisualeegepilepsydetectionmethodbasedonawaveletstatisticalrepresentationandthekullbackleiblerdivergence AT riskmarcelo avisualeegepilepsydetectionmethodbasedonawaveletstatisticalrepresentationandthekullbackleiblerdivergence AT quinterorinconantonio visualeegepilepsydetectionmethodbasedonawaveletstatisticalrepresentationandthekullbackleiblerdivergence AT pereyramarcelo visualeegepilepsydetectionmethodbasedonawaveletstatisticalrepresentationandthekullbackleiblerdivergence AT dgianocarlos visualeegepilepsydetectionmethodbasedonawaveletstatisticalrepresentationandthekullbackleiblerdivergence AT batatiahadj visualeegepilepsydetectionmethodbasedonawaveletstatisticalrepresentationandthekullbackleiblerdivergence AT riskmarcelo visualeegepilepsydetectionmethodbasedonawaveletstatisticalrepresentationandthekullbackleiblerdivergence |
_version_ |
1765660866974318592 |