Study on spike-and-wave detection in epileptic signals using T-location-scale distribution and the K-nearest neighbors classifier
"Pattern classification in electroencephalography (EEG) signals is an important problem in biomedical engineering since it enables the detection of brain activity, in particular the early detection of epileptic seizures. In this paper we propose a k-nearest neighbors classification for epilepti...
Autores principales: | , , , |
---|---|
Formato: | Ponencias en Congresos acceptedVersion |
Lenguaje: | Inglés |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | http://ri.itba.edu.ar/handle/123456789/1718 |
Aporte de: |
id |
I32-R138-123456789-1718 |
---|---|
record_format |
dspace |
spelling |
I32-R138-123456789-17182022-12-07T14:13:54Z Study on spike-and-wave detection in epileptic signals using T-location-scale distribution and the K-nearest neighbors classifier Quintero-Rincón, Antonio Prendes, Jorge D'Giano, Carlos Muro, Valeria ELECTROENCEFALOGRAFIA EPILEPSIA COMPENSACION DEL MOVIMIENTO PROCESAMIENTO DE SEÑALES DIGITALES "Pattern classification in electroencephalography (EEG) signals is an important problem in biomedical engineering since it enables the detection of brain activity, in particular the early detection of epileptic seizures. In this paper we propose a k-nearest neighbors classification for epileptic EEG signals based on an t-location-scale statistical representation to detect spike-and-waves. The proposed approach is demonstrated on a real dataset containing both spike-and-wave events and normal brain function signals, where our performance is evaluated in terms of classification accuracy, sensitivity and specificity." 2019-08-16T16:15:27Z 2019-08-16T16:15:27Z 2017-12 Ponencias en Congresos info:eu-repo/semantics/acceptedVersion 978-1538-63-397-7 http://ri.itba.edu.ar/handle/123456789/1718 en info:eu-repo/semantics/altIdentifier/doi/10.1109/URUCON.2017.8171869 info:eu-repo/grantAgreement/ITBA/ITBACyT/41/AR. Ciudad Autónoma de Buenos Aires application/pdf |
institution |
Instituto Tecnológico de Buenos Aires (ITBA) |
institution_str |
I-32 |
repository_str |
R-138 |
collection |
Repositorio Institucional Instituto Tecnológico de Buenos Aires (ITBA) |
language |
Inglés |
topic |
ELECTROENCEFALOGRAFIA EPILEPSIA COMPENSACION DEL MOVIMIENTO PROCESAMIENTO DE SEÑALES DIGITALES |
spellingShingle |
ELECTROENCEFALOGRAFIA EPILEPSIA COMPENSACION DEL MOVIMIENTO PROCESAMIENTO DE SEÑALES DIGITALES Quintero-Rincón, Antonio Prendes, Jorge D'Giano, Carlos Muro, Valeria Study on spike-and-wave detection in epileptic signals using T-location-scale distribution and the K-nearest neighbors classifier |
topic_facet |
ELECTROENCEFALOGRAFIA EPILEPSIA COMPENSACION DEL MOVIMIENTO PROCESAMIENTO DE SEÑALES DIGITALES |
description |
"Pattern classification in electroencephalography (EEG) signals is an important problem in biomedical engineering since it enables the detection of brain activity, in particular the early detection of epileptic seizures. In this paper we propose a k-nearest neighbors classification for epileptic EEG signals based on an t-location-scale statistical representation to detect spike-and-waves. The proposed approach is demonstrated on a real dataset containing both spike-and-wave events and normal brain function signals, where our performance is evaluated in terms of classification accuracy, sensitivity and specificity." |
format |
Ponencias en Congresos acceptedVersion |
author |
Quintero-Rincón, Antonio Prendes, Jorge D'Giano, Carlos Muro, Valeria |
author_facet |
Quintero-Rincón, Antonio Prendes, Jorge D'Giano, Carlos Muro, Valeria |
author_sort |
Quintero-Rincón, Antonio |
title |
Study on spike-and-wave detection in epileptic signals using T-location-scale distribution and the K-nearest neighbors classifier |
title_short |
Study on spike-and-wave detection in epileptic signals using T-location-scale distribution and the K-nearest neighbors classifier |
title_full |
Study on spike-and-wave detection in epileptic signals using T-location-scale distribution and the K-nearest neighbors classifier |
title_fullStr |
Study on spike-and-wave detection in epileptic signals using T-location-scale distribution and the K-nearest neighbors classifier |
title_full_unstemmed |
Study on spike-and-wave detection in epileptic signals using T-location-scale distribution and the K-nearest neighbors classifier |
title_sort |
study on spike-and-wave detection in epileptic signals using t-location-scale distribution and the k-nearest neighbors classifier |
publishDate |
2019 |
url |
http://ri.itba.edu.ar/handle/123456789/1718 |
work_keys_str_mv |
AT quinterorinconantonio studyonspikeandwavedetectioninepilepticsignalsusingtlocationscaledistributionandtheknearestneighborsclassifier AT prendesjorge studyonspikeandwavedetectioninepilepticsignalsusingtlocationscaledistributionandtheknearestneighborsclassifier AT dgianocarlos studyonspikeandwavedetectioninepilepticsignalsusingtlocationscaledistributionandtheknearestneighborsclassifier AT murovaleria studyonspikeandwavedetectioninepilepticsignalsusingtlocationscaledistributionandtheknearestneighborsclassifier |
_version_ |
1765661034997088256 |