Classification of normal and pre-ictal EEG signals using permutation entropies and a generalized linear model as a classifier
"In this contribution, a comparison between different permutation entropies as classifiers of electroencephalogram (EEG) records corresponding to normal and pre-ictal states is made. A discrete probability distribution function derived from symbolization techniques applied to the EEG signal is...
Autores principales: | , , , , , |
---|---|
Formato: | Artículos de Publicaciones Periódicas publishedVersion |
Lenguaje: | Inglés |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | http://ri.itba.edu.ar/handle/123456789/1635 |
Aporte de: |
id |
I32-R138-123456789-1635 |
---|---|
record_format |
dspace |
spelling |
I32-R138-123456789-16352022-12-07T13:06:43Z Classification of normal and pre-ictal EEG signals using permutation entropies and a generalized linear model as a classifier Redelico, Francisco Traversaro Varela, Francisco García, María del Carmen Silva, Walter Rosso, Osvaldo A. Risk, Marcelo ELECTROENCEFALOGRAFIA ENTROPIA "In this contribution, a comparison between different permutation entropies as classifiers of electroencephalogram (EEG) records corresponding to normal and pre-ictal states is made. A discrete probability distribution function derived from symbolization techniques applied to the EEG signal is used to calculate the Tsallis entropy, Shannon Entropy, Renyi Entropy, and Min Entropy, and they are used separately as the only independent variable in a logistic regression model in order to evaluate its capacity as a classification variable in a inferential manner. The area under the Receiver Operating Characteristic (ROC) curve, along with the accuracy, sensitivity, and specificity are used to compare the models. All the permutation entropies are excellent classifiers, with an accuracy greater than 94.5% in every case, and a sensitivity greater than 97%. Accounting for the amplitude in the symbolization technique retains more information of the signal than its counterparts, and it could be a good candidate for automatic classification of EEG signals." 2019-07-05T17:04:15Z 2019-07-05T17:04:15Z 2017-02 Artículos de Publicaciones Periódicas info:eu-repo/semantics/publishedVersion 1099-4300 http://ri.itba.edu.ar/handle/123456789/1635 en info:eu-repo/semantics/reference/doi/10.3390/e19020072 info:eu-repo/grantAgreement/CONICET/AR. Ciudad Autónoma de Buenos Aires http://creativecommons.org/licenses/by/4.0/ application/pdf |
institution |
Instituto Tecnológico de Buenos Aires (ITBA) |
institution_str |
I-32 |
repository_str |
R-138 |
collection |
Repositorio Institucional Instituto Tecnológico de Buenos Aires (ITBA) |
language |
Inglés |
topic |
ELECTROENCEFALOGRAFIA ENTROPIA |
spellingShingle |
ELECTROENCEFALOGRAFIA ENTROPIA Redelico, Francisco Traversaro Varela, Francisco García, María del Carmen Silva, Walter Rosso, Osvaldo A. Risk, Marcelo Classification of normal and pre-ictal EEG signals using permutation entropies and a generalized linear model as a classifier |
topic_facet |
ELECTROENCEFALOGRAFIA ENTROPIA |
description |
"In this contribution, a comparison between different permutation entropies as classifiers of electroencephalogram (EEG) records corresponding to normal and pre-ictal states is made. A discrete probability distribution function derived from symbolization techniques applied to the EEG signal is used to calculate the Tsallis entropy, Shannon Entropy, Renyi Entropy, and Min Entropy, and they are used separately as the only independent variable in a logistic regression model in order to evaluate its capacity as a classification variable in a inferential manner. The area under the Receiver Operating Characteristic (ROC) curve, along with the accuracy, sensitivity, and specificity are used to compare the models. All the permutation entropies are excellent classifiers, with an accuracy greater than 94.5% in every case, and a sensitivity greater than 97%. Accounting for the amplitude in the symbolization technique retains more information of the signal than its counterparts, and it could be a good candidate for automatic classification of EEG signals." |
format |
Artículos de Publicaciones Periódicas publishedVersion |
author |
Redelico, Francisco Traversaro Varela, Francisco García, María del Carmen Silva, Walter Rosso, Osvaldo A. Risk, Marcelo |
author_facet |
Redelico, Francisco Traversaro Varela, Francisco García, María del Carmen Silva, Walter Rosso, Osvaldo A. Risk, Marcelo |
author_sort |
Redelico, Francisco |
title |
Classification of normal and pre-ictal EEG signals using permutation entropies and a generalized linear model as a classifier |
title_short |
Classification of normal and pre-ictal EEG signals using permutation entropies and a generalized linear model as a classifier |
title_full |
Classification of normal and pre-ictal EEG signals using permutation entropies and a generalized linear model as a classifier |
title_fullStr |
Classification of normal and pre-ictal EEG signals using permutation entropies and a generalized linear model as a classifier |
title_full_unstemmed |
Classification of normal and pre-ictal EEG signals using permutation entropies and a generalized linear model as a classifier |
title_sort |
classification of normal and pre-ictal eeg signals using permutation entropies and a generalized linear model as a classifier |
publishDate |
2019 |
url |
http://ri.itba.edu.ar/handle/123456789/1635 |
work_keys_str_mv |
AT redelicofrancisco classificationofnormalandpreictaleegsignalsusingpermutationentropiesandageneralizedlinearmodelasaclassifier AT traversarovarelafrancisco classificationofnormalandpreictaleegsignalsusingpermutationentropiesandageneralizedlinearmodelasaclassifier AT garciamariadelcarmen classificationofnormalandpreictaleegsignalsusingpermutationentropiesandageneralizedlinearmodelasaclassifier AT silvawalter classificationofnormalandpreictaleegsignalsusingpermutationentropiesandageneralizedlinearmodelasaclassifier AT rossoosvaldoa classificationofnormalandpreictaleegsignalsusingpermutationentropiesandageneralizedlinearmodelasaclassifier AT riskmarcelo classificationofnormalandpreictaleegsignalsusingpermutationentropiesandageneralizedlinearmodelasaclassifier |
_version_ |
1765661033305735168 |