Biocerámicos porosos compuestos de hidroxiapatita y dióxido de titanio

Los materiales basados en hidroxiapatita son los protagonistas en el desarrollo de soportes para la osteogénesis (proceso de formación de nuevo tejido óseo) dado que presentan una composición química similar al componente mineral natural del hueso. Estos materiales se caracterizan por ser biocompati...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Hernández Ortiz, Gloria Mercedes
Otros Autores: Fanovich, María Alejandra
Formato: Tesis draft Tesis doctoral
Lenguaje:Español
Publicado: Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina 2020
Materias:
Acceso en línea:http://rinfi.fi.mdp.edu.ar/xmlui/handle/123456789/484
Aporte de:
id I29-R182-123456789-484
record_format dspace
institution Universidad Nacional de Mar del Plata (UNMdP)
institution_str I-29
repository_str R-182
collection RINFI - Facultad de Ingeniería (UNMdP)
language Español
topic Materiales basados en hidroxiapatita
Aplicaciones biomédicas
Osteogénesis
Materiales nanoestructurados
Dióxido de titanio (TiO2)
Soportes porosos nanoestructurados
spellingShingle Materiales basados en hidroxiapatita
Aplicaciones biomédicas
Osteogénesis
Materiales nanoestructurados
Dióxido de titanio (TiO2)
Soportes porosos nanoestructurados
Hernández Ortiz, Gloria Mercedes
Biocerámicos porosos compuestos de hidroxiapatita y dióxido de titanio
topic_facet Materiales basados en hidroxiapatita
Aplicaciones biomédicas
Osteogénesis
Materiales nanoestructurados
Dióxido de titanio (TiO2)
Soportes porosos nanoestructurados
description Los materiales basados en hidroxiapatita son los protagonistas en el desarrollo de soportes para la osteogénesis (proceso de formación de nuevo tejido óseo) dado que presentan una composición química similar al componente mineral natural del hueso. Estos materiales se caracterizan por ser biocompatibles y bioactivos, sin embargo, en algunos casos la presencia de fases secundarias genera deficiencias en el desempeño del material dando lugar a una velocidad de degradación inadecuada o a una baja resistencia mecánica. Para mejorar el comportamiento de estos materiales se ha reportado una combinación de gran potencial tecnológico que conjuga una fase con suficiente resistencia mecánica para soportar el crecimiento de nuevo hueso, y otra que sea capaz de promover el mecanismo de reparación y al mismo tiempo unirse al hueso formado. Este concepto ha dado lugar al desarrollo de materiales nanoestructurados biocompatibles basados en hidroxiapatita (HA) como fase bioactiva, y dióxido de titanio (TiO2) como fase bioinerte que otorga resistencia mecánica. En el presente trabajo se propone desarrollar una secuencia metodológica que permita obtener soportes porosos nanoestructurados compuestos de hidroxiapatita y dióxido de titanio. En la primera parte de este trabajo de tesis, se estudió la síntesis de nanopartículas de HA por vía hidrotermal a partir de suspensiones acuosas de hidróxido de calcio y ácido ortofosfórico. Se analizó la influencia que tienen la naturaleza y concentración de aditivos como el bromuro de cetiltrimetilamonio (CTAB) y hexametilentetramina (HMTA) sobre la morfología de las partículas obtenidas. También se analizó la influencia de la velocidad de enfriamiento del sistema de reacción sobre las características morfológicas y estructurales de las partículas de hidroxiapatita. Se determinó que a mayores velocidades de enfriamiento se generan mayor número de defectos superficiales, lo que le conduciría a un aumento en la capacidad de biointegración de las nanopartículas de HA. En la segunda parte de este trabajo, se implementaron procedimientos experimentales que proporcionaron la integración de las nanopartículas de HA en una matriz de dióxido de titanio a partir de la técnica sol-gel. Se realizaron diversos ensayos que permitieron ajustar las variables de síntesis para la formación de los sistemas porosos compuestos. Además, se analizó el efecto de la concentración de HA sobre el tiempo de gelación y la integridad final de los geles compuestos obtenidos. En una tercera parte, se presenta el estudio del proceso de secado de los geles, que representa la etapa crítica del desarrollo debido a que se requiere eliminar el solvente contenido en los poros sin que se deteriore la microestructura tridimensional generada en el proceso de formación del gel. En este trabajo se estudió el proceso de secado con dióxido de carbono en condiciones supercríticas, que consiste básicamente en una extracción del solvente contenido en los poros del gel. Se analizó la influencia de la presión y la temperatura en el proceso de secado asociado a la integridad final y microestructura desarrollada en los materiales compuestos. Finalmente, se analizan las características de los materiales desarrollados vinculados a su resistencia mecánica y comportamiento biológico frente a células específicas del tejido óseo y se discuten los alcances de sus aplicaciones. Mail de los autores Gloria Hernández <gloriamercedeshernandez@gmail.com>
author2 Fanovich, María Alejandra
author_facet Fanovich, María Alejandra
Hernández Ortiz, Gloria Mercedes
format Thesis
draft
Tesis doctoral
Tesis doctoral
author Hernández Ortiz, Gloria Mercedes
author_sort Hernández Ortiz, Gloria Mercedes
title Biocerámicos porosos compuestos de hidroxiapatita y dióxido de titanio
title_short Biocerámicos porosos compuestos de hidroxiapatita y dióxido de titanio
title_full Biocerámicos porosos compuestos de hidroxiapatita y dióxido de titanio
title_fullStr Biocerámicos porosos compuestos de hidroxiapatita y dióxido de titanio
title_full_unstemmed Biocerámicos porosos compuestos de hidroxiapatita y dióxido de titanio
title_sort biocerámicos porosos compuestos de hidroxiapatita y dióxido de titanio
publisher Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina
publishDate 2020
url http://rinfi.fi.mdp.edu.ar/xmlui/handle/123456789/484
work_keys_str_mv AT hernandezortizgloriamercedes bioceramicosporososcompuestosdehidroxiapatitaydioxidodetitanio
_version_ 1768720860853567488
spelling I29-R182-123456789-4842023-06-08T14:22:52Z Biocerámicos porosos compuestos de hidroxiapatita y dióxido de titanio Hernández Ortiz, Gloria Mercedes Fanovich, María Alejandra Parra, Rodrigo Materiales basados en hidroxiapatita Aplicaciones biomédicas Osteogénesis Materiales nanoestructurados Dióxido de titanio (TiO2) Soportes porosos nanoestructurados Los materiales basados en hidroxiapatita son los protagonistas en el desarrollo de soportes para la osteogénesis (proceso de formación de nuevo tejido óseo) dado que presentan una composición química similar al componente mineral natural del hueso. Estos materiales se caracterizan por ser biocompatibles y bioactivos, sin embargo, en algunos casos la presencia de fases secundarias genera deficiencias en el desempeño del material dando lugar a una velocidad de degradación inadecuada o a una baja resistencia mecánica. Para mejorar el comportamiento de estos materiales se ha reportado una combinación de gran potencial tecnológico que conjuga una fase con suficiente resistencia mecánica para soportar el crecimiento de nuevo hueso, y otra que sea capaz de promover el mecanismo de reparación y al mismo tiempo unirse al hueso formado. Este concepto ha dado lugar al desarrollo de materiales nanoestructurados biocompatibles basados en hidroxiapatita (HA) como fase bioactiva, y dióxido de titanio (TiO2) como fase bioinerte que otorga resistencia mecánica. En el presente trabajo se propone desarrollar una secuencia metodológica que permita obtener soportes porosos nanoestructurados compuestos de hidroxiapatita y dióxido de titanio. En la primera parte de este trabajo de tesis, se estudió la síntesis de nanopartículas de HA por vía hidrotermal a partir de suspensiones acuosas de hidróxido de calcio y ácido ortofosfórico. Se analizó la influencia que tienen la naturaleza y concentración de aditivos como el bromuro de cetiltrimetilamonio (CTAB) y hexametilentetramina (HMTA) sobre la morfología de las partículas obtenidas. También se analizó la influencia de la velocidad de enfriamiento del sistema de reacción sobre las características morfológicas y estructurales de las partículas de hidroxiapatita. Se determinó que a mayores velocidades de enfriamiento se generan mayor número de defectos superficiales, lo que le conduciría a un aumento en la capacidad de biointegración de las nanopartículas de HA. En la segunda parte de este trabajo, se implementaron procedimientos experimentales que proporcionaron la integración de las nanopartículas de HA en una matriz de dióxido de titanio a partir de la técnica sol-gel. Se realizaron diversos ensayos que permitieron ajustar las variables de síntesis para la formación de los sistemas porosos compuestos. Además, se analizó el efecto de la concentración de HA sobre el tiempo de gelación y la integridad final de los geles compuestos obtenidos. En una tercera parte, se presenta el estudio del proceso de secado de los geles, que representa la etapa crítica del desarrollo debido a que se requiere eliminar el solvente contenido en los poros sin que se deteriore la microestructura tridimensional generada en el proceso de formación del gel. En este trabajo se estudió el proceso de secado con dióxido de carbono en condiciones supercríticas, que consiste básicamente en una extracción del solvente contenido en los poros del gel. Se analizó la influencia de la presión y la temperatura en el proceso de secado asociado a la integridad final y microestructura desarrollada en los materiales compuestos. Finalmente, se analizan las características de los materiales desarrollados vinculados a su resistencia mecánica y comportamiento biológico frente a células específicas del tejido óseo y se discuten los alcances de sus aplicaciones. Mail de los autores Gloria Hernández <gloriamercedeshernandez@gmail.com> Fil: Hernández Ortiz, Gloria Mercedes. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina 2020-12 Thesis info:eu-repo/semantics/draft info:ar-repo/semantics/tesis doctoral info:eu-repo/semantics/doctoralThesis application/pdf http://rinfi.fi.mdp.edu.ar/xmlui/handle/123456789/484 spa info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/4.0/ Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina