Mechanical properties of organelles driven by microtubule-dependent molecular motors in living cells

The organization of the cytoplasm is regulated by molecular motors which transport organelles and other cargoes along cytoskeleton tracks. Melanophores have pigment organelles or melanosomes that move along microtubules toward their minus and plus end by the action of cytoplasmic dynein and kinesin-...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Bruno, L., Salierno, M., Wetzler, D.E., Despósito, M.A., Levi, V.
Formato: Artículo publishedVersion
Publicado: 2011
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_19326203_v6_n4_p_Bruno
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_19326203_v6_n4_p_Bruno_oai
Aporte de:
id I28-R145-paper_19326203_v6_n4_p_Bruno_oai
record_format dspace
spelling I28-R145-paper_19326203_v6_n4_p_Bruno_oai2024-08-16 Bruno, L. Salierno, M. Wetzler, D.E. Despósito, M.A. Levi, V. 2011 The organization of the cytoplasm is regulated by molecular motors which transport organelles and other cargoes along cytoskeleton tracks. Melanophores have pigment organelles or melanosomes that move along microtubules toward their minus and plus end by the action of cytoplasmic dynein and kinesin-2, respectively. In this work, we used single particle tracking to characterize the mechanical properties of motor-driven organelles during transport along microtubules. We tracked organelles with high temporal and spatial resolutions and characterized their dynamics perpendicular to the cytoskeleton track. The quantitative analysis of these data showed that the dynamics is due to a spring-like interaction between melanosomes and microtubules in a viscoelastic microenvironment. A model based on a generalized Langevin equation explained these observations and predicted that the stiffness measured for the motor complex acting as a linker between organelles and microtubules is ~ one order smaller than that determined for motor proteins in vitro. This result suggests that other biomolecules involved in the interaction between motors and organelles contribute to the mechanical properties of the motor complex. We hypothesise that the high flexibility observed for the motor linker may be required to improve the efficiency of the transport driven by multiple copies of motor molecules. © 2011 Bruno et al. Fil:Bruno, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Salierno, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Wetzler, D.E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Despósito, M.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Levi, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_19326203_v6_n4_p_Bruno info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar PLoS ONE 2011;6(4) dynactin dynein adenosine triphosphatase kinesin molecular motor dynactin microtubule associated protein molecular motor animal cell article cell organelle cell tracking controlled study gene dosage in vitro study melanosome microtubule molecular dynamics nonhuman protein function protein interaction protein stiffness protein transport quantitative analysis viscoelasticity Xenopus laevis animal biological model biomechanics cell survival elasticity mechanics melanosome metabolism microtubule viscosity Animals Biomechanics Cell Survival Elasticity Mechanical Processes Melanosomes Microtubule-Associated Proteins Microtubules Models, Biological Molecular Motor Proteins Protein Transport Viscosity Xenopus laevis Mechanical properties of organelles driven by microtubule-dependent molecular motors in living cells info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_19326203_v6_n4_p_Bruno_oai
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-145
collection Repositorio Digital de la Universidad de Buenos Aires (UBA)
topic dynactin
dynein adenosine triphosphatase
kinesin
molecular motor
dynactin
microtubule associated protein
molecular motor
animal cell
article
cell organelle
cell tracking
controlled study
gene dosage
in vitro study
melanosome
microtubule
molecular dynamics
nonhuman
protein function
protein interaction
protein stiffness
protein transport
quantitative analysis
viscoelasticity
Xenopus laevis
animal
biological model
biomechanics
cell survival
elasticity
mechanics
melanosome
metabolism
microtubule
viscosity
Animals
Biomechanics
Cell Survival
Elasticity
Mechanical Processes
Melanosomes
Microtubule-Associated Proteins
Microtubules
Models, Biological
Molecular Motor Proteins
Protein Transport
Viscosity
Xenopus laevis
spellingShingle dynactin
dynein adenosine triphosphatase
kinesin
molecular motor
dynactin
microtubule associated protein
molecular motor
animal cell
article
cell organelle
cell tracking
controlled study
gene dosage
in vitro study
melanosome
microtubule
molecular dynamics
nonhuman
protein function
protein interaction
protein stiffness
protein transport
quantitative analysis
viscoelasticity
Xenopus laevis
animal
biological model
biomechanics
cell survival
elasticity
mechanics
melanosome
metabolism
microtubule
viscosity
Animals
Biomechanics
Cell Survival
Elasticity
Mechanical Processes
Melanosomes
Microtubule-Associated Proteins
Microtubules
Models, Biological
Molecular Motor Proteins
Protein Transport
Viscosity
Xenopus laevis
Bruno, L.
Salierno, M.
Wetzler, D.E.
Despósito, M.A.
Levi, V.
Mechanical properties of organelles driven by microtubule-dependent molecular motors in living cells
topic_facet dynactin
dynein adenosine triphosphatase
kinesin
molecular motor
dynactin
microtubule associated protein
molecular motor
animal cell
article
cell organelle
cell tracking
controlled study
gene dosage
in vitro study
melanosome
microtubule
molecular dynamics
nonhuman
protein function
protein interaction
protein stiffness
protein transport
quantitative analysis
viscoelasticity
Xenopus laevis
animal
biological model
biomechanics
cell survival
elasticity
mechanics
melanosome
metabolism
microtubule
viscosity
Animals
Biomechanics
Cell Survival
Elasticity
Mechanical Processes
Melanosomes
Microtubule-Associated Proteins
Microtubules
Models, Biological
Molecular Motor Proteins
Protein Transport
Viscosity
Xenopus laevis
description The organization of the cytoplasm is regulated by molecular motors which transport organelles and other cargoes along cytoskeleton tracks. Melanophores have pigment organelles or melanosomes that move along microtubules toward their minus and plus end by the action of cytoplasmic dynein and kinesin-2, respectively. In this work, we used single particle tracking to characterize the mechanical properties of motor-driven organelles during transport along microtubules. We tracked organelles with high temporal and spatial resolutions and characterized their dynamics perpendicular to the cytoskeleton track. The quantitative analysis of these data showed that the dynamics is due to a spring-like interaction between melanosomes and microtubules in a viscoelastic microenvironment. A model based on a generalized Langevin equation explained these observations and predicted that the stiffness measured for the motor complex acting as a linker between organelles and microtubules is ~ one order smaller than that determined for motor proteins in vitro. This result suggests that other biomolecules involved in the interaction between motors and organelles contribute to the mechanical properties of the motor complex. We hypothesise that the high flexibility observed for the motor linker may be required to improve the efficiency of the transport driven by multiple copies of motor molecules. © 2011 Bruno et al.
format Artículo
Artículo
publishedVersion
author Bruno, L.
Salierno, M.
Wetzler, D.E.
Despósito, M.A.
Levi, V.
author_facet Bruno, L.
Salierno, M.
Wetzler, D.E.
Despósito, M.A.
Levi, V.
author_sort Bruno, L.
title Mechanical properties of organelles driven by microtubule-dependent molecular motors in living cells
title_short Mechanical properties of organelles driven by microtubule-dependent molecular motors in living cells
title_full Mechanical properties of organelles driven by microtubule-dependent molecular motors in living cells
title_fullStr Mechanical properties of organelles driven by microtubule-dependent molecular motors in living cells
title_full_unstemmed Mechanical properties of organelles driven by microtubule-dependent molecular motors in living cells
title_sort mechanical properties of organelles driven by microtubule-dependent molecular motors in living cells
publishDate 2011
url http://hdl.handle.net/20.500.12110/paper_19326203_v6_n4_p_Bruno
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_19326203_v6_n4_p_Bruno_oai
work_keys_str_mv AT brunol mechanicalpropertiesoforganellesdrivenbymicrotubuledependentmolecularmotorsinlivingcells
AT saliernom mechanicalpropertiesoforganellesdrivenbymicrotubuledependentmolecularmotorsinlivingcells
AT wetzlerde mechanicalpropertiesoforganellesdrivenbymicrotubuledependentmolecularmotorsinlivingcells
AT despositoma mechanicalpropertiesoforganellesdrivenbymicrotubuledependentmolecularmotorsinlivingcells
AT leviv mechanicalpropertiesoforganellesdrivenbymicrotubuledependentmolecularmotorsinlivingcells
_version_ 1809357126770884608