Wavelet decomposition of forced turbulence: Applicability of the iterative Donoho-Johnstone threshold

We examine the decomposition of forced Taylor-Green and Arn'old-Beltrami-Childress (ABC) flows into coherent and incoherent components using an orthonormal wavelet decomposition. We ask whether wavelet coefficient thresholding based on the Donoho-Johnstone criterion can extract a coherent vorte...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Lord, J.W., Rast, M.P., Mckinlay, C., Clyne, J., Mininni, P.D.
Formato: Artículo publishedVersion
Publicado: 2012
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_10706631_v24_n2_p_Lord
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_10706631_v24_n2_p_Lord_oai
Aporte de:
id I28-R145-paper_10706631_v24_n2_p_Lord_oai
record_format dspace
spelling I28-R145-paper_10706631_v24_n2_p_Lord_oai2024-08-16 Lord, J.W. Rast, M.P. Mckinlay, C. Clyne, J. Mininni, P.D. 2012 We examine the decomposition of forced Taylor-Green and Arn'old-Beltrami-Childress (ABC) flows into coherent and incoherent components using an orthonormal wavelet decomposition. We ask whether wavelet coefficient thresholding based on the Donoho-Johnstone criterion can extract a coherent vortex signal while leaving behind Gaussian random noise. We find that no threshold yields a strictly Gaussian incoherent component, and that the most Gaussian incoherent flow is found for data compression lower than that achieved with the fully iterated Donoho-Johnstone threshold. Moreover, even at such low compression, the incoherent component shows clear signs of large-scale spatial correlations that are signatures of the forcings used to drive the flows. © 2012 American Institute of Physics. Fil:Mininni, P.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_10706631_v24_n2_p_Lord info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar Phys. Fluids 2012;24(2) Coherent vortices Forcings Gaussian random noise Gaussians Spatial correlations Wavelet coefficient thresholding Gaussian distribution Wavelet decomposition Data compression Wavelet decomposition of forced turbulence: Applicability of the iterative Donoho-Johnstone threshold info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_10706631_v24_n2_p_Lord_oai
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-145
collection Repositorio Digital de la Universidad de Buenos Aires (UBA)
topic Coherent vortices
Forcings
Gaussian random noise
Gaussians
Spatial correlations
Wavelet coefficient thresholding
Gaussian distribution
Wavelet decomposition
Data compression
spellingShingle Coherent vortices
Forcings
Gaussian random noise
Gaussians
Spatial correlations
Wavelet coefficient thresholding
Gaussian distribution
Wavelet decomposition
Data compression
Lord, J.W.
Rast, M.P.
Mckinlay, C.
Clyne, J.
Mininni, P.D.
Wavelet decomposition of forced turbulence: Applicability of the iterative Donoho-Johnstone threshold
topic_facet Coherent vortices
Forcings
Gaussian random noise
Gaussians
Spatial correlations
Wavelet coefficient thresholding
Gaussian distribution
Wavelet decomposition
Data compression
description We examine the decomposition of forced Taylor-Green and Arn'old-Beltrami-Childress (ABC) flows into coherent and incoherent components using an orthonormal wavelet decomposition. We ask whether wavelet coefficient thresholding based on the Donoho-Johnstone criterion can extract a coherent vortex signal while leaving behind Gaussian random noise. We find that no threshold yields a strictly Gaussian incoherent component, and that the most Gaussian incoherent flow is found for data compression lower than that achieved with the fully iterated Donoho-Johnstone threshold. Moreover, even at such low compression, the incoherent component shows clear signs of large-scale spatial correlations that are signatures of the forcings used to drive the flows. © 2012 American Institute of Physics.
format Artículo
Artículo
publishedVersion
author Lord, J.W.
Rast, M.P.
Mckinlay, C.
Clyne, J.
Mininni, P.D.
author_facet Lord, J.W.
Rast, M.P.
Mckinlay, C.
Clyne, J.
Mininni, P.D.
author_sort Lord, J.W.
title Wavelet decomposition of forced turbulence: Applicability of the iterative Donoho-Johnstone threshold
title_short Wavelet decomposition of forced turbulence: Applicability of the iterative Donoho-Johnstone threshold
title_full Wavelet decomposition of forced turbulence: Applicability of the iterative Donoho-Johnstone threshold
title_fullStr Wavelet decomposition of forced turbulence: Applicability of the iterative Donoho-Johnstone threshold
title_full_unstemmed Wavelet decomposition of forced turbulence: Applicability of the iterative Donoho-Johnstone threshold
title_sort wavelet decomposition of forced turbulence: applicability of the iterative donoho-johnstone threshold
publishDate 2012
url http://hdl.handle.net/20.500.12110/paper_10706631_v24_n2_p_Lord
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_10706631_v24_n2_p_Lord_oai
work_keys_str_mv AT lordjw waveletdecompositionofforcedturbulenceapplicabilityoftheiterativedonohojohnstonethreshold
AT rastmp waveletdecompositionofforcedturbulenceapplicabilityoftheiterativedonohojohnstonethreshold
AT mckinlayc waveletdecompositionofforcedturbulenceapplicabilityoftheiterativedonohojohnstonethreshold
AT clynej waveletdecompositionofforcedturbulenceapplicabilityoftheiterativedonohojohnstonethreshold
AT mininnipd waveletdecompositionofforcedturbulenceapplicabilityoftheiterativedonohojohnstonethreshold
_version_ 1809357111128227840