Wavelet decomposition of forced turbulence: Applicability of the iterative Donoho-Johnstone threshold
We examine the decomposition of forced Taylor-Green and Arn'old-Beltrami-Childress (ABC) flows into coherent and incoherent components using an orthonormal wavelet decomposition. We ask whether wavelet coefficient thresholding based on the Donoho-Johnstone criterion can extract a coherent vorte...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | Artículo publishedVersion |
Publicado: |
2012
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_10706631_v24_n2_p_Lord https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_10706631_v24_n2_p_Lord_oai |
Aporte de: |
id |
I28-R145-paper_10706631_v24_n2_p_Lord_oai |
---|---|
record_format |
dspace |
spelling |
I28-R145-paper_10706631_v24_n2_p_Lord_oai2024-08-16 Lord, J.W. Rast, M.P. Mckinlay, C. Clyne, J. Mininni, P.D. 2012 We examine the decomposition of forced Taylor-Green and Arn'old-Beltrami-Childress (ABC) flows into coherent and incoherent components using an orthonormal wavelet decomposition. We ask whether wavelet coefficient thresholding based on the Donoho-Johnstone criterion can extract a coherent vortex signal while leaving behind Gaussian random noise. We find that no threshold yields a strictly Gaussian incoherent component, and that the most Gaussian incoherent flow is found for data compression lower than that achieved with the fully iterated Donoho-Johnstone threshold. Moreover, even at such low compression, the incoherent component shows clear signs of large-scale spatial correlations that are signatures of the forcings used to drive the flows. © 2012 American Institute of Physics. Fil:Mininni, P.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_10706631_v24_n2_p_Lord info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar Phys. Fluids 2012;24(2) Coherent vortices Forcings Gaussian random noise Gaussians Spatial correlations Wavelet coefficient thresholding Gaussian distribution Wavelet decomposition Data compression Wavelet decomposition of forced turbulence: Applicability of the iterative Donoho-Johnstone threshold info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_10706631_v24_n2_p_Lord_oai |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-145 |
collection |
Repositorio Digital de la Universidad de Buenos Aires (UBA) |
topic |
Coherent vortices Forcings Gaussian random noise Gaussians Spatial correlations Wavelet coefficient thresholding Gaussian distribution Wavelet decomposition Data compression |
spellingShingle |
Coherent vortices Forcings Gaussian random noise Gaussians Spatial correlations Wavelet coefficient thresholding Gaussian distribution Wavelet decomposition Data compression Lord, J.W. Rast, M.P. Mckinlay, C. Clyne, J. Mininni, P.D. Wavelet decomposition of forced turbulence: Applicability of the iterative Donoho-Johnstone threshold |
topic_facet |
Coherent vortices Forcings Gaussian random noise Gaussians Spatial correlations Wavelet coefficient thresholding Gaussian distribution Wavelet decomposition Data compression |
description |
We examine the decomposition of forced Taylor-Green and Arn'old-Beltrami-Childress (ABC) flows into coherent and incoherent components using an orthonormal wavelet decomposition. We ask whether wavelet coefficient thresholding based on the Donoho-Johnstone criterion can extract a coherent vortex signal while leaving behind Gaussian random noise. We find that no threshold yields a strictly Gaussian incoherent component, and that the most Gaussian incoherent flow is found for data compression lower than that achieved with the fully iterated Donoho-Johnstone threshold. Moreover, even at such low compression, the incoherent component shows clear signs of large-scale spatial correlations that are signatures of the forcings used to drive the flows. © 2012 American Institute of Physics. |
format |
Artículo Artículo publishedVersion |
author |
Lord, J.W. Rast, M.P. Mckinlay, C. Clyne, J. Mininni, P.D. |
author_facet |
Lord, J.W. Rast, M.P. Mckinlay, C. Clyne, J. Mininni, P.D. |
author_sort |
Lord, J.W. |
title |
Wavelet decomposition of forced turbulence: Applicability of the iterative Donoho-Johnstone threshold |
title_short |
Wavelet decomposition of forced turbulence: Applicability of the iterative Donoho-Johnstone threshold |
title_full |
Wavelet decomposition of forced turbulence: Applicability of the iterative Donoho-Johnstone threshold |
title_fullStr |
Wavelet decomposition of forced turbulence: Applicability of the iterative Donoho-Johnstone threshold |
title_full_unstemmed |
Wavelet decomposition of forced turbulence: Applicability of the iterative Donoho-Johnstone threshold |
title_sort |
wavelet decomposition of forced turbulence: applicability of the iterative donoho-johnstone threshold |
publishDate |
2012 |
url |
http://hdl.handle.net/20.500.12110/paper_10706631_v24_n2_p_Lord https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_10706631_v24_n2_p_Lord_oai |
work_keys_str_mv |
AT lordjw waveletdecompositionofforcedturbulenceapplicabilityoftheiterativedonohojohnstonethreshold AT rastmp waveletdecompositionofforcedturbulenceapplicabilityoftheiterativedonohojohnstonethreshold AT mckinlayc waveletdecompositionofforcedturbulenceapplicabilityoftheiterativedonohojohnstonethreshold AT clynej waveletdecompositionofforcedturbulenceapplicabilityoftheiterativedonohojohnstonethreshold AT mininnipd waveletdecompositionofforcedturbulenceapplicabilityoftheiterativedonohojohnstonethreshold |
_version_ |
1809357111128227840 |