id I28-R145-paper_08981221_v30_n1_p79_Milaszewicz_oai
record_format dspace
spelling I28-R145-paper_08981221_v30_n1_p79_Milaszewicz_oai2024-08-16 Milaszewicz, J.P. 1995 The improvement in convergence by means of accurate functional elimination in the context of the monotone Newton theorem is further analyzed and extended to discrete approximations of the Newton method. © 1995. Fil:Milaszewicz, J.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_08981221_v30_n1_p79_Milaszewicz info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar Comput Math Appl 1995;30(1):79-90 Discretized Newton method Functional elimination Nonlinear systems Order convex functions Approximation theory Boundary value problems Convergence of numerical methods Differentiation (calculus) Function evaluation Iterative methods Mathematical models Matrix algebra Theorem proving Discretized Newton method Functional elimination Jacobian matrix Monotone discrete Newton iterations Monotone sequences Order convex functions Nonlinear equations Monotone discrete Newton iterations and elimination info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_08981221_v30_n1_p79_Milaszewicz_oai
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-145
collection Repositorio Digital de la Universidad de Buenos Aires (UBA)
topic Discretized Newton method
Functional elimination
Nonlinear systems
Order convex functions
Approximation theory
Boundary value problems
Convergence of numerical methods
Differentiation (calculus)
Function evaluation
Iterative methods
Mathematical models
Matrix algebra
Theorem proving
Discretized Newton method
Functional elimination
Jacobian matrix
Monotone discrete Newton iterations
Monotone sequences
Order convex functions
Nonlinear equations
spellingShingle Discretized Newton method
Functional elimination
Nonlinear systems
Order convex functions
Approximation theory
Boundary value problems
Convergence of numerical methods
Differentiation (calculus)
Function evaluation
Iterative methods
Mathematical models
Matrix algebra
Theorem proving
Discretized Newton method
Functional elimination
Jacobian matrix
Monotone discrete Newton iterations
Monotone sequences
Order convex functions
Nonlinear equations
Milaszewicz, J.P.
Monotone discrete Newton iterations and elimination
topic_facet Discretized Newton method
Functional elimination
Nonlinear systems
Order convex functions
Approximation theory
Boundary value problems
Convergence of numerical methods
Differentiation (calculus)
Function evaluation
Iterative methods
Mathematical models
Matrix algebra
Theorem proving
Discretized Newton method
Functional elimination
Jacobian matrix
Monotone discrete Newton iterations
Monotone sequences
Order convex functions
Nonlinear equations
description The improvement in convergence by means of accurate functional elimination in the context of the monotone Newton theorem is further analyzed and extended to discrete approximations of the Newton method. © 1995.
format Artículo
Artículo
publishedVersion
author Milaszewicz, J.P.
author_facet Milaszewicz, J.P.
author_sort Milaszewicz, J.P.
title Monotone discrete Newton iterations and elimination
title_short Monotone discrete Newton iterations and elimination
title_full Monotone discrete Newton iterations and elimination
title_fullStr Monotone discrete Newton iterations and elimination
title_full_unstemmed Monotone discrete Newton iterations and elimination
title_sort monotone discrete newton iterations and elimination
publishDate 1995
url http://hdl.handle.net/20.500.12110/paper_08981221_v30_n1_p79_Milaszewicz
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_08981221_v30_n1_p79_Milaszewicz_oai
work_keys_str_mv AT milaszewiczjp monotonediscretenewtoniterationsandelimination
_version_ 1809356823158849536