A geometric index reduction method for implicit systems of differential algebraic equations

This paper deals with the index reduction problem for the class of quasi-regular DAE systems. It is shown that any of these systems can be transformed to a generically equivalent first order DAE system consisting of a single purely algebraic (polynomial) equation plus an under-determined ODE (a diff...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: D'Alfonso, L., Jeronimo, G., Ollivier, F., Sedoglavic, A., Solernó, P.
Formato: Artículo publishedVersion
Publicado: 2011
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_07477171_v46_n10_p1114_DAlfonso
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_07477171_v46_n10_p1114_DAlfonso_oai
Aporte de:
id I28-R145-paper_07477171_v46_n10_p1114_DAlfonso_oai
record_format dspace
spelling I28-R145-paper_07477171_v46_n10_p1114_DAlfonso_oai2024-08-16 D'Alfonso, L. Jeronimo, G. Ollivier, F. Sedoglavic, A. Solernó, P. 2011 This paper deals with the index reduction problem for the class of quasi-regular DAE systems. It is shown that any of these systems can be transformed to a generically equivalent first order DAE system consisting of a single purely algebraic (polynomial) equation plus an under-determined ODE (a differential Kronecker representation) in as many variables as the order of the input system. This can be done by means of a Kronecker-type algorithm with bounded complexity. © 2011 Elsevier Ltd. Fil:Jeronimo, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Solernó, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_07477171_v46_n10_p1114_DAlfonso info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar J. Symb. Comput. 2011;46(10):1114-1138 Geometric resolution Implicit systems of Differential Algebraic Equations Index Kronecker algorithm A geometric index reduction method for implicit systems of differential algebraic equations info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_07477171_v46_n10_p1114_DAlfonso_oai
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-145
collection Repositorio Digital de la Universidad de Buenos Aires (UBA)
topic Geometric resolution
Implicit systems of Differential Algebraic Equations
Index
Kronecker algorithm
spellingShingle Geometric resolution
Implicit systems of Differential Algebraic Equations
Index
Kronecker algorithm
D'Alfonso, L.
Jeronimo, G.
Ollivier, F.
Sedoglavic, A.
Solernó, P.
A geometric index reduction method for implicit systems of differential algebraic equations
topic_facet Geometric resolution
Implicit systems of Differential Algebraic Equations
Index
Kronecker algorithm
description This paper deals with the index reduction problem for the class of quasi-regular DAE systems. It is shown that any of these systems can be transformed to a generically equivalent first order DAE system consisting of a single purely algebraic (polynomial) equation plus an under-determined ODE (a differential Kronecker representation) in as many variables as the order of the input system. This can be done by means of a Kronecker-type algorithm with bounded complexity. © 2011 Elsevier Ltd.
format Artículo
Artículo
publishedVersion
author D'Alfonso, L.
Jeronimo, G.
Ollivier, F.
Sedoglavic, A.
Solernó, P.
author_facet D'Alfonso, L.
Jeronimo, G.
Ollivier, F.
Sedoglavic, A.
Solernó, P.
author_sort D'Alfonso, L.
title A geometric index reduction method for implicit systems of differential algebraic equations
title_short A geometric index reduction method for implicit systems of differential algebraic equations
title_full A geometric index reduction method for implicit systems of differential algebraic equations
title_fullStr A geometric index reduction method for implicit systems of differential algebraic equations
title_full_unstemmed A geometric index reduction method for implicit systems of differential algebraic equations
title_sort geometric index reduction method for implicit systems of differential algebraic equations
publishDate 2011
url http://hdl.handle.net/20.500.12110/paper_07477171_v46_n10_p1114_DAlfonso
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_07477171_v46_n10_p1114_DAlfonso_oai
work_keys_str_mv AT dalfonsol ageometricindexreductionmethodforimplicitsystemsofdifferentialalgebraicequations
AT jeronimog ageometricindexreductionmethodforimplicitsystemsofdifferentialalgebraicequations
AT ollivierf ageometricindexreductionmethodforimplicitsystemsofdifferentialalgebraicequations
AT sedoglavica ageometricindexreductionmethodforimplicitsystemsofdifferentialalgebraicequations
AT solernop ageometricindexreductionmethodforimplicitsystemsofdifferentialalgebraicequations
AT dalfonsol geometricindexreductionmethodforimplicitsystemsofdifferentialalgebraicequations
AT jeronimog geometricindexreductionmethodforimplicitsystemsofdifferentialalgebraicequations
AT ollivierf geometricindexreductionmethodforimplicitsystemsofdifferentialalgebraicequations
AT sedoglavica geometricindexreductionmethodforimplicitsystemsofdifferentialalgebraicequations
AT solernop geometricindexreductionmethodforimplicitsystemsofdifferentialalgebraicequations
_version_ 1809357101233864704