An elementary proof of Sylvester's double sums for subresultants
In 1853 Sylvester stated and proved an elegant formula that expresses the polynomial subresultants in terms of the roots of the input polynomials. Sylvester's formula was also recently proved by Lascoux and Pragacz using multi-Schur functions and divided differences. In this paper, we provide a...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | Artículo publishedVersion |
Publicado: |
2007
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_07477171_v42_n3_p290_DAndrea https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_07477171_v42_n3_p290_DAndrea_oai |
Aporte de: |
Sumario: | In 1853 Sylvester stated and proved an elegant formula that expresses the polynomial subresultants in terms of the roots of the input polynomials. Sylvester's formula was also recently proved by Lascoux and Pragacz using multi-Schur functions and divided differences. In this paper, we provide an elementary proof that uses only basic properties of matrix multiplication and Vandermonde determinants. © 2006 Elsevier Ltd. All rights reserved. |
---|