An elementary proof of Sylvester's double sums for subresultants
In 1853 Sylvester stated and proved an elegant formula that expresses the polynomial subresultants in terms of the roots of the input polynomials. Sylvester's formula was also recently proved by Lascoux and Pragacz using multi-Schur functions and divided differences. In this paper, we provide a...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | Artículo publishedVersion |
Publicado: |
2007
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_07477171_v42_n3_p290_DAndrea https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_07477171_v42_n3_p290_DAndrea_oai |
Aporte de: |
id |
I28-R145-paper_07477171_v42_n3_p290_DAndrea_oai |
---|---|
record_format |
dspace |
spelling |
I28-R145-paper_07477171_v42_n3_p290_DAndrea_oai2024-08-16 D'Andrea, C. Hong, H. Krick, T. Szanto, A. 2007 In 1853 Sylvester stated and proved an elegant formula that expresses the polynomial subresultants in terms of the roots of the input polynomials. Sylvester's formula was also recently proved by Lascoux and Pragacz using multi-Schur functions and divided differences. In this paper, we provide an elementary proof that uses only basic properties of matrix multiplication and Vandermonde determinants. © 2006 Elsevier Ltd. All rights reserved. Fil:D'Andrea, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Krick, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_07477171_v42_n3_p290_DAndrea info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar J. Symb. Comput. 2007;42(3):290-297 Double-sum formula Subresultants Vandermonde determinant An elementary proof of Sylvester's double sums for subresultants info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_07477171_v42_n3_p290_DAndrea_oai |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-145 |
collection |
Repositorio Digital de la Universidad de Buenos Aires (UBA) |
topic |
Double-sum formula Subresultants Vandermonde determinant |
spellingShingle |
Double-sum formula Subresultants Vandermonde determinant D'Andrea, C. Hong, H. Krick, T. Szanto, A. An elementary proof of Sylvester's double sums for subresultants |
topic_facet |
Double-sum formula Subresultants Vandermonde determinant |
description |
In 1853 Sylvester stated and proved an elegant formula that expresses the polynomial subresultants in terms of the roots of the input polynomials. Sylvester's formula was also recently proved by Lascoux and Pragacz using multi-Schur functions and divided differences. In this paper, we provide an elementary proof that uses only basic properties of matrix multiplication and Vandermonde determinants. © 2006 Elsevier Ltd. All rights reserved. |
format |
Artículo Artículo publishedVersion |
author |
D'Andrea, C. Hong, H. Krick, T. Szanto, A. |
author_facet |
D'Andrea, C. Hong, H. Krick, T. Szanto, A. |
author_sort |
D'Andrea, C. |
title |
An elementary proof of Sylvester's double sums for subresultants |
title_short |
An elementary proof of Sylvester's double sums for subresultants |
title_full |
An elementary proof of Sylvester's double sums for subresultants |
title_fullStr |
An elementary proof of Sylvester's double sums for subresultants |
title_full_unstemmed |
An elementary proof of Sylvester's double sums for subresultants |
title_sort |
elementary proof of sylvester's double sums for subresultants |
publishDate |
2007 |
url |
http://hdl.handle.net/20.500.12110/paper_07477171_v42_n3_p290_DAndrea https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_07477171_v42_n3_p290_DAndrea_oai |
work_keys_str_mv |
AT dandreac anelementaryproofofsylvestersdoublesumsforsubresultants AT hongh anelementaryproofofsylvestersdoublesumsforsubresultants AT krickt anelementaryproofofsylvestersdoublesumsforsubresultants AT szantoa anelementaryproofofsylvestersdoublesumsforsubresultants AT dandreac elementaryproofofsylvestersdoublesumsforsubresultants AT hongh elementaryproofofsylvestersdoublesumsforsubresultants AT krickt elementaryproofofsylvestersdoublesumsforsubresultants AT szantoa elementaryproofofsylvestersdoublesumsforsubresultants |
_version_ |
1809356911728918528 |