Computing multihomogeneous resultants using straight-line programs

We present a new algorithm for the computation of resultants associated with multihomogeneous (and, in particular, homogeneous) polynomial equation systems using straight-line programs. Its complexity is polynomial in the number of coefficients of the input system and the degree of the resultant com...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jeronimo, G., Sabia, J.
Formato: Artículo publishedVersion
Publicado: 2007
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_07477171_v42_n1-2_p218_Jeronimo
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_07477171_v42_n1-2_p218_Jeronimo_oai
Aporte de:
id I28-R145-paper_07477171_v42_n1-2_p218_Jeronimo_oai
record_format dspace
spelling I28-R145-paper_07477171_v42_n1-2_p218_Jeronimo_oai2024-08-16 Jeronimo, G. Sabia, J. 2007 We present a new algorithm for the computation of resultants associated with multihomogeneous (and, in particular, homogeneous) polynomial equation systems using straight-line programs. Its complexity is polynomial in the number of coefficients of the input system and the degree of the resultant computed. © 2006 Elsevier Ltd. All rights reserved. Fil:Jeronimo, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Sabia, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_07477171_v42_n1-2_p218_Jeronimo info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar J. Symb. Comput. 2007;42(1-2):218-235 Multihomogeneous system Poisson-type product formula Sparse resultant Symbolic Newton's algorithm Computing multihomogeneous resultants using straight-line programs info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_07477171_v42_n1-2_p218_Jeronimo_oai
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-145
collection Repositorio Digital de la Universidad de Buenos Aires (UBA)
topic Multihomogeneous system
Poisson-type product formula
Sparse resultant
Symbolic Newton's algorithm
spellingShingle Multihomogeneous system
Poisson-type product formula
Sparse resultant
Symbolic Newton's algorithm
Jeronimo, G.
Sabia, J.
Computing multihomogeneous resultants using straight-line programs
topic_facet Multihomogeneous system
Poisson-type product formula
Sparse resultant
Symbolic Newton's algorithm
description We present a new algorithm for the computation of resultants associated with multihomogeneous (and, in particular, homogeneous) polynomial equation systems using straight-line programs. Its complexity is polynomial in the number of coefficients of the input system and the degree of the resultant computed. © 2006 Elsevier Ltd. All rights reserved.
format Artículo
Artículo
publishedVersion
author Jeronimo, G.
Sabia, J.
author_facet Jeronimo, G.
Sabia, J.
author_sort Jeronimo, G.
title Computing multihomogeneous resultants using straight-line programs
title_short Computing multihomogeneous resultants using straight-line programs
title_full Computing multihomogeneous resultants using straight-line programs
title_fullStr Computing multihomogeneous resultants using straight-line programs
title_full_unstemmed Computing multihomogeneous resultants using straight-line programs
title_sort computing multihomogeneous resultants using straight-line programs
publishDate 2007
url http://hdl.handle.net/20.500.12110/paper_07477171_v42_n1-2_p218_Jeronimo
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_07477171_v42_n1-2_p218_Jeronimo_oai
work_keys_str_mv AT jeronimog computingmultihomogeneousresultantsusingstraightlineprograms
AT sabiaj computingmultihomogeneousresultantsusingstraightlineprograms
_version_ 1809356821272461312