Zero-range condensation at criticality

Zero-range processes with jump rates that decrease with the number of particles per site can exhibit a condensation transition, where a positive fraction of all particles condenses on a single site when the total density exceeds a critical value. We consider rates which decay as a power law or a str...

Descripción completa

Detalles Bibliográficos
Autores principales: Armendáriz, I., Grosskinsky, S., Loulakis, M.
Formato: Artículo publishedVersion
Publicado: 2013
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_03044149_v123_n9_p3466_Armendariz
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_03044149_v123_n9_p3466_Armendariz_oai
Aporte de:
id I28-R145-paper_03044149_v123_n9_p3466_Armendariz_oai
record_format dspace
spelling I28-R145-paper_03044149_v123_n9_p3466_Armendariz_oai2024-08-16 Armendáriz, I. Grosskinsky, S. Loulakis, M. 2013 Zero-range processes with jump rates that decrease with the number of particles per site can exhibit a condensation transition, where a positive fraction of all particles condenses on a single site when the total density exceeds a critical value. We consider rates which decay as a power law or a stretched exponential to a non-zero limiting value, and study the onset of condensation at the critical density. We establish a law of large numbers for the excess mass fraction in the maximum, as well as distributional limits for the fluctuations of the maximum and the fluctuations in the bulk. © 2013 Elsevier B.V. All rights reserved. Fil:Armendáriz, I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_03044149_v123_n9_p3466_Armendariz info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar Stoch. Processes Appl. 2013;123(9):3466-3496 Condensation Conditional maximum Subexponential tails Zero-range process Condensation transition Conditional maximum Critical density Law of large numbers Limiting values Stretched exponential Subexponential tails Zero-range process Computer simulation Statistics Stochastic systems Condensation Zero-range condensation at criticality info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_03044149_v123_n9_p3466_Armendariz_oai
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-145
collection Repositorio Digital de la Universidad de Buenos Aires (UBA)
topic Condensation
Conditional maximum
Subexponential tails
Zero-range process
Condensation transition
Conditional maximum
Critical density
Law of large numbers
Limiting values
Stretched exponential
Subexponential tails
Zero-range process
Computer simulation
Statistics
Stochastic systems
Condensation
spellingShingle Condensation
Conditional maximum
Subexponential tails
Zero-range process
Condensation transition
Conditional maximum
Critical density
Law of large numbers
Limiting values
Stretched exponential
Subexponential tails
Zero-range process
Computer simulation
Statistics
Stochastic systems
Condensation
Armendáriz, I.
Grosskinsky, S.
Loulakis, M.
Zero-range condensation at criticality
topic_facet Condensation
Conditional maximum
Subexponential tails
Zero-range process
Condensation transition
Conditional maximum
Critical density
Law of large numbers
Limiting values
Stretched exponential
Subexponential tails
Zero-range process
Computer simulation
Statistics
Stochastic systems
Condensation
description Zero-range processes with jump rates that decrease with the number of particles per site can exhibit a condensation transition, where a positive fraction of all particles condenses on a single site when the total density exceeds a critical value. We consider rates which decay as a power law or a stretched exponential to a non-zero limiting value, and study the onset of condensation at the critical density. We establish a law of large numbers for the excess mass fraction in the maximum, as well as distributional limits for the fluctuations of the maximum and the fluctuations in the bulk. © 2013 Elsevier B.V. All rights reserved.
format Artículo
Artículo
publishedVersion
author Armendáriz, I.
Grosskinsky, S.
Loulakis, M.
author_facet Armendáriz, I.
Grosskinsky, S.
Loulakis, M.
author_sort Armendáriz, I.
title Zero-range condensation at criticality
title_short Zero-range condensation at criticality
title_full Zero-range condensation at criticality
title_fullStr Zero-range condensation at criticality
title_full_unstemmed Zero-range condensation at criticality
title_sort zero-range condensation at criticality
publishDate 2013
url http://hdl.handle.net/20.500.12110/paper_03044149_v123_n9_p3466_Armendariz
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_03044149_v123_n9_p3466_Armendariz_oai
work_keys_str_mv AT armendarizi zerorangecondensationatcriticality
AT grosskinskys zerorangecondensationatcriticality
AT loulakism zerorangecondensationatcriticality
_version_ 1809357002983342080