Zero-range condensation at criticality
Zero-range processes with jump rates that decrease with the number of particles per site can exhibit a condensation transition, where a positive fraction of all particles condenses on a single site when the total density exceeds a critical value. We consider rates which decay as a power law or a str...
Autores principales: | , , |
---|---|
Formato: | Artículo publishedVersion |
Publicado: |
2013
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_03044149_v123_n9_p3466_Armendariz https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_03044149_v123_n9_p3466_Armendariz_oai |
Aporte de: |
id |
I28-R145-paper_03044149_v123_n9_p3466_Armendariz_oai |
---|---|
record_format |
dspace |
spelling |
I28-R145-paper_03044149_v123_n9_p3466_Armendariz_oai2024-08-16 Armendáriz, I. Grosskinsky, S. Loulakis, M. 2013 Zero-range processes with jump rates that decrease with the number of particles per site can exhibit a condensation transition, where a positive fraction of all particles condenses on a single site when the total density exceeds a critical value. We consider rates which decay as a power law or a stretched exponential to a non-zero limiting value, and study the onset of condensation at the critical density. We establish a law of large numbers for the excess mass fraction in the maximum, as well as distributional limits for the fluctuations of the maximum and the fluctuations in the bulk. © 2013 Elsevier B.V. All rights reserved. Fil:Armendáriz, I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_03044149_v123_n9_p3466_Armendariz info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar Stoch. Processes Appl. 2013;123(9):3466-3496 Condensation Conditional maximum Subexponential tails Zero-range process Condensation transition Conditional maximum Critical density Law of large numbers Limiting values Stretched exponential Subexponential tails Zero-range process Computer simulation Statistics Stochastic systems Condensation Zero-range condensation at criticality info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_03044149_v123_n9_p3466_Armendariz_oai |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-145 |
collection |
Repositorio Digital de la Universidad de Buenos Aires (UBA) |
topic |
Condensation Conditional maximum Subexponential tails Zero-range process Condensation transition Conditional maximum Critical density Law of large numbers Limiting values Stretched exponential Subexponential tails Zero-range process Computer simulation Statistics Stochastic systems Condensation |
spellingShingle |
Condensation Conditional maximum Subexponential tails Zero-range process Condensation transition Conditional maximum Critical density Law of large numbers Limiting values Stretched exponential Subexponential tails Zero-range process Computer simulation Statistics Stochastic systems Condensation Armendáriz, I. Grosskinsky, S. Loulakis, M. Zero-range condensation at criticality |
topic_facet |
Condensation Conditional maximum Subexponential tails Zero-range process Condensation transition Conditional maximum Critical density Law of large numbers Limiting values Stretched exponential Subexponential tails Zero-range process Computer simulation Statistics Stochastic systems Condensation |
description |
Zero-range processes with jump rates that decrease with the number of particles per site can exhibit a condensation transition, where a positive fraction of all particles condenses on a single site when the total density exceeds a critical value. We consider rates which decay as a power law or a stretched exponential to a non-zero limiting value, and study the onset of condensation at the critical density. We establish a law of large numbers for the excess mass fraction in the maximum, as well as distributional limits for the fluctuations of the maximum and the fluctuations in the bulk. © 2013 Elsevier B.V. All rights reserved. |
format |
Artículo Artículo publishedVersion |
author |
Armendáriz, I. Grosskinsky, S. Loulakis, M. |
author_facet |
Armendáriz, I. Grosskinsky, S. Loulakis, M. |
author_sort |
Armendáriz, I. |
title |
Zero-range condensation at criticality |
title_short |
Zero-range condensation at criticality |
title_full |
Zero-range condensation at criticality |
title_fullStr |
Zero-range condensation at criticality |
title_full_unstemmed |
Zero-range condensation at criticality |
title_sort |
zero-range condensation at criticality |
publishDate |
2013 |
url |
http://hdl.handle.net/20.500.12110/paper_03044149_v123_n9_p3466_Armendariz https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_03044149_v123_n9_p3466_Armendariz_oai |
work_keys_str_mv |
AT armendarizi zerorangecondensationatcriticality AT grosskinskys zerorangecondensationatcriticality AT loulakism zerorangecondensationatcriticality |
_version_ |
1809357002983342080 |