A local symmetry result for linear elliptic problems with solutions changing sign

We prove that the only domain Ω such that there exists a solution to the following problem Δu+ω2u=-1 in Ω, u=0 on δΩ, and 1|δΩ|∫δΩδ nu=c, for a given constant c, is the unit ball B1, if we assume that Ω lies in an appropriate class of Lipschitz domains. © 2011 Elsevier Masson SAS.

Guardado en:
Detalles Bibliográficos
Autor principal: Canuto, B.
Formato: Artículo publishedVersion
Publicado: 2011
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_02941449_v28_n4_p551_Canuto
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_02941449_v28_n4_p551_Canuto_oai
Aporte de:
Descripción
Sumario:We prove that the only domain Ω such that there exists a solution to the following problem Δu+ω2u=-1 in Ω, u=0 on δΩ, and 1|δΩ|∫δΩδ nu=c, for a given constant c, is the unit ball B1, if we assume that Ω lies in an appropriate class of Lipschitz domains. © 2011 Elsevier Masson SAS.