A local symmetry result for linear elliptic problems with solutions changing sign
We prove that the only domain Ω such that there exists a solution to the following problem Δu+ω2u=-1 in Ω, u=0 on δΩ, and 1|δΩ|∫δΩδ nu=c, for a given constant c, is the unit ball B1, if we assume that Ω lies in an appropriate class of Lipschitz domains. © 2011 Elsevier Masson SAS.
Guardado en:
Autor principal: | |
---|---|
Formato: | Artículo publishedVersion |
Publicado: |
2011
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_02941449_v28_n4_p551_Canuto https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_02941449_v28_n4_p551_Canuto_oai |
Aporte de: |
Sumario: | We prove that the only domain Ω such that there exists a solution to the following problem Δu+ω2u=-1 in Ω, u=0 on δΩ, and 1|δΩ|∫δΩδ nu=c, for a given constant c, is the unit ball B1, if we assume that Ω lies in an appropriate class of Lipschitz domains. © 2011 Elsevier Masson SAS. |
---|