A local symmetry result for linear elliptic problems with solutions changing sign

We prove that the only domain Ω such that there exists a solution to the following problem Δu+ω2u=-1 in Ω, u=0 on δΩ, and 1|δΩ|∫δΩδ nu=c, for a given constant c, is the unit ball B1, if we assume that Ω lies in an appropriate class of Lipschitz domains. © 2011 Elsevier Masson SAS.

Guardado en:
Detalles Bibliográficos
Autor principal: Canuto, B.
Formato: Artículo publishedVersion
Publicado: 2011
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_02941449_v28_n4_p551_Canuto
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_02941449_v28_n4_p551_Canuto_oai
Aporte de:
id I28-R145-paper_02941449_v28_n4_p551_Canuto_oai
record_format dspace
spelling I28-R145-paper_02941449_v28_n4_p551_Canuto_oai2024-08-16 Canuto, B. 2011 We prove that the only domain Ω such that there exists a solution to the following problem Δu+ω2u=-1 in Ω, u=0 on δΩ, and 1|δΩ|∫δΩδ nu=c, for a given constant c, is the unit ball B1, if we assume that Ω lies in an appropriate class of Lipschitz domains. © 2011 Elsevier Masson SAS. Fil:Canuto, B. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_02941449_v28_n4_p551_Canuto info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar Anna Inst Henri Poincare Annal Anal Non Lineaire 2011;28(4):551-564 Elliptic problem Following problem Lipschitz domain Local symmetry Unit ball A local symmetry result for linear elliptic problems with solutions changing sign info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_02941449_v28_n4_p551_Canuto_oai
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-145
collection Repositorio Digital de la Universidad de Buenos Aires (UBA)
topic Elliptic problem
Following problem
Lipschitz domain
Local symmetry
Unit ball
spellingShingle Elliptic problem
Following problem
Lipschitz domain
Local symmetry
Unit ball
Canuto, B.
A local symmetry result for linear elliptic problems with solutions changing sign
topic_facet Elliptic problem
Following problem
Lipschitz domain
Local symmetry
Unit ball
description We prove that the only domain Ω such that there exists a solution to the following problem Δu+ω2u=-1 in Ω, u=0 on δΩ, and 1|δΩ|∫δΩδ nu=c, for a given constant c, is the unit ball B1, if we assume that Ω lies in an appropriate class of Lipschitz domains. © 2011 Elsevier Masson SAS.
format Artículo
Artículo
publishedVersion
author Canuto, B.
author_facet Canuto, B.
author_sort Canuto, B.
title A local symmetry result for linear elliptic problems with solutions changing sign
title_short A local symmetry result for linear elliptic problems with solutions changing sign
title_full A local symmetry result for linear elliptic problems with solutions changing sign
title_fullStr A local symmetry result for linear elliptic problems with solutions changing sign
title_full_unstemmed A local symmetry result for linear elliptic problems with solutions changing sign
title_sort local symmetry result for linear elliptic problems with solutions changing sign
publishDate 2011
url http://hdl.handle.net/20.500.12110/paper_02941449_v28_n4_p551_Canuto
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_02941449_v28_n4_p551_Canuto_oai
work_keys_str_mv AT canutob alocalsymmetryresultforlinearellipticproblemswithsolutionschangingsign
AT canutob localsymmetryresultforlinearellipticproblemswithsolutionschangingsign
_version_ 1809356904939388928