A local symmetry result for linear elliptic problems with solutions changing sign
We prove that the only domain Ω such that there exists a solution to the following problem Δu+ω2u=-1 in Ω, u=0 on δΩ, and 1|δΩ|∫δΩδ nu=c, for a given constant c, is the unit ball B1, if we assume that Ω lies in an appropriate class of Lipschitz domains. © 2011 Elsevier Masson SAS.
Guardado en:
Autor principal: | |
---|---|
Formato: | Artículo publishedVersion |
Publicado: |
2011
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_02941449_v28_n4_p551_Canuto https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_02941449_v28_n4_p551_Canuto_oai |
Aporte de: |
id |
I28-R145-paper_02941449_v28_n4_p551_Canuto_oai |
---|---|
record_format |
dspace |
spelling |
I28-R145-paper_02941449_v28_n4_p551_Canuto_oai2024-08-16 Canuto, B. 2011 We prove that the only domain Ω such that there exists a solution to the following problem Δu+ω2u=-1 in Ω, u=0 on δΩ, and 1|δΩ|∫δΩδ nu=c, for a given constant c, is the unit ball B1, if we assume that Ω lies in an appropriate class of Lipschitz domains. © 2011 Elsevier Masson SAS. Fil:Canuto, B. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_02941449_v28_n4_p551_Canuto info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar Anna Inst Henri Poincare Annal Anal Non Lineaire 2011;28(4):551-564 Elliptic problem Following problem Lipschitz domain Local symmetry Unit ball A local symmetry result for linear elliptic problems with solutions changing sign info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_02941449_v28_n4_p551_Canuto_oai |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-145 |
collection |
Repositorio Digital de la Universidad de Buenos Aires (UBA) |
topic |
Elliptic problem Following problem Lipschitz domain Local symmetry Unit ball |
spellingShingle |
Elliptic problem Following problem Lipschitz domain Local symmetry Unit ball Canuto, B. A local symmetry result for linear elliptic problems with solutions changing sign |
topic_facet |
Elliptic problem Following problem Lipschitz domain Local symmetry Unit ball |
description |
We prove that the only domain Ω such that there exists a solution to the following problem Δu+ω2u=-1 in Ω, u=0 on δΩ, and 1|δΩ|∫δΩδ nu=c, for a given constant c, is the unit ball B1, if we assume that Ω lies in an appropriate class of Lipschitz domains. © 2011 Elsevier Masson SAS. |
format |
Artículo Artículo publishedVersion |
author |
Canuto, B. |
author_facet |
Canuto, B. |
author_sort |
Canuto, B. |
title |
A local symmetry result for linear elliptic problems with solutions changing sign |
title_short |
A local symmetry result for linear elliptic problems with solutions changing sign |
title_full |
A local symmetry result for linear elliptic problems with solutions changing sign |
title_fullStr |
A local symmetry result for linear elliptic problems with solutions changing sign |
title_full_unstemmed |
A local symmetry result for linear elliptic problems with solutions changing sign |
title_sort |
local symmetry result for linear elliptic problems with solutions changing sign |
publishDate |
2011 |
url |
http://hdl.handle.net/20.500.12110/paper_02941449_v28_n4_p551_Canuto https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_02941449_v28_n4_p551_Canuto_oai |
work_keys_str_mv |
AT canutob alocalsymmetryresultforlinearellipticproblemswithsolutionschangingsign AT canutob localsymmetryresultforlinearellipticproblemswithsolutionschangingsign |
_version_ |
1809356904939388928 |