Changes in biomass and chemical composition during lecithotrophic larval development of the southern stone crab Paralomis granulosa
Changes in biomass and elemental composition (dry mass, W; carbon, C; nitrogen, N; hydrogen, H) were studied in the laboratory during complete larval and early juvenile development of the southern stone crab Paralomis granulosa (Jacquinot). At 6 ± 0.5°C; total larval development from hatching to met...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | Artículo publishedVersion |
Publicado: |
2003
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_01718630_v257_n_p189_Calcagno https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_01718630_v257_n_p189_Calcagno_oai |
Aporte de: |
id |
I28-R145-paper_01718630_v257_n_p189_Calcagno_oai |
---|---|
record_format |
dspace |
spelling |
I28-R145-paper_01718630_v257_n_p189_Calcagno_oai2024-08-16 Calcagno, J.A. Thatje, S. Anger, K. Lovrich, G.A. Kaffenberger, A. 2003 Changes in biomass and elemental composition (dry mass, W; carbon, C; nitrogen, N; hydrogen, H) were studied in the laboratory during complete larval and early juvenile development of the southern stone crab Paralomis granulosa (Jacquinot). At 6 ± 0.5°C; total larval development from hatching to metamorphosis lasted ca. 56 d, comprising 2 demersal zoeal stages and a benthic megalopa, with mean stage durations of 5, 11 and 45 d, respectively. All larval stages of P. granulosa are lecithotrophic, and first feeding and growth were consistently observed immediately after metamorphosis to the first juvenile crab stage. Regardless of presence or absence of food, W, C, N, and H decreased throughout larval development. Also the C:N mass ratio decreased significantly, from 7.2 at hatching to 4.2 at metamorphosis, indicating that a large initial lipid store remaining from the egg yolk was gradually utilised as an internal energy source. In total, about 68% of the initial quantities of C and H present at hatching, and 44% of N were lost during non-feeding larval development to metamorphosis. Approximately 10% of the initially present C, N and H were lost with larval exuviae, half of which was lost in the megalopa stage alone. Hence, metabolic biomass degradation accounted for losses of ca. 59% in C and H, but for only 33% in N, Most of the losses in C and H reflected metabolic energy consumption (primarily lipid degradation), while ca. 1/4 of the losses in N and 2/3 of those in W were due to larval exuviation. Complete larval lecithotrophy is based on an enhanced maternal energy investment per offspring, and on energy-saving mechanisms such as low larval locomotory activity and low exuvial losses. These traits are interpreted as bioenergetic adaptations to food-limited conditions in subantarctic regions, where a pronounced seasonality limits the period of primary production. Fil:Calcagno, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Lovrich, G.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_01718630_v257_n_p189_Calcagno info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar Mar. Ecol. Prog. Ser. 2003;257:189-196 Cold adaptation Crustacea Decapoda Larval development Lecithotrophy Subantarctic biomass chemical composition crab larval development metamorphosis Crustacea Decapoda (Crustacea taxon) Decapoda (Crustacea) Invertebrata Lithodidae Lithodidae Paralomis Paralomis granulosa Paralomis granulosa Changes in biomass and chemical composition during lecithotrophic larval development of the southern stone crab Paralomis granulosa info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_01718630_v257_n_p189_Calcagno_oai |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-145 |
collection |
Repositorio Digital de la Universidad de Buenos Aires (UBA) |
topic |
Cold adaptation Crustacea Decapoda Larval development Lecithotrophy Subantarctic biomass chemical composition crab larval development metamorphosis Crustacea Decapoda (Crustacea taxon) Decapoda (Crustacea) Invertebrata Lithodidae Lithodidae Paralomis Paralomis granulosa Paralomis granulosa |
spellingShingle |
Cold adaptation Crustacea Decapoda Larval development Lecithotrophy Subantarctic biomass chemical composition crab larval development metamorphosis Crustacea Decapoda (Crustacea taxon) Decapoda (Crustacea) Invertebrata Lithodidae Lithodidae Paralomis Paralomis granulosa Paralomis granulosa Calcagno, J.A. Thatje, S. Anger, K. Lovrich, G.A. Kaffenberger, A. Changes in biomass and chemical composition during lecithotrophic larval development of the southern stone crab Paralomis granulosa |
topic_facet |
Cold adaptation Crustacea Decapoda Larval development Lecithotrophy Subantarctic biomass chemical composition crab larval development metamorphosis Crustacea Decapoda (Crustacea taxon) Decapoda (Crustacea) Invertebrata Lithodidae Lithodidae Paralomis Paralomis granulosa Paralomis granulosa |
description |
Changes in biomass and elemental composition (dry mass, W; carbon, C; nitrogen, N; hydrogen, H) were studied in the laboratory during complete larval and early juvenile development of the southern stone crab Paralomis granulosa (Jacquinot). At 6 ± 0.5°C; total larval development from hatching to metamorphosis lasted ca. 56 d, comprising 2 demersal zoeal stages and a benthic megalopa, with mean stage durations of 5, 11 and 45 d, respectively. All larval stages of P. granulosa are lecithotrophic, and first feeding and growth were consistently observed immediately after metamorphosis to the first juvenile crab stage. Regardless of presence or absence of food, W, C, N, and H decreased throughout larval development. Also the C:N mass ratio decreased significantly, from 7.2 at hatching to 4.2 at metamorphosis, indicating that a large initial lipid store remaining from the egg yolk was gradually utilised as an internal energy source. In total, about 68% of the initial quantities of C and H present at hatching, and 44% of N were lost during non-feeding larval development to metamorphosis. Approximately 10% of the initially present C, N and H were lost with larval exuviae, half of which was lost in the megalopa stage alone. Hence, metabolic biomass degradation accounted for losses of ca. 59% in C and H, but for only 33% in N, Most of the losses in C and H reflected metabolic energy consumption (primarily lipid degradation), while ca. 1/4 of the losses in N and 2/3 of those in W were due to larval exuviation. Complete larval lecithotrophy is based on an enhanced maternal energy investment per offspring, and on energy-saving mechanisms such as low larval locomotory activity and low exuvial losses. These traits are interpreted as bioenergetic adaptations to food-limited conditions in subantarctic regions, where a pronounced seasonality limits the period of primary production. |
format |
Artículo Artículo publishedVersion |
author |
Calcagno, J.A. Thatje, S. Anger, K. Lovrich, G.A. Kaffenberger, A. |
author_facet |
Calcagno, J.A. Thatje, S. Anger, K. Lovrich, G.A. Kaffenberger, A. |
author_sort |
Calcagno, J.A. |
title |
Changes in biomass and chemical composition during lecithotrophic larval development of the southern stone crab Paralomis granulosa |
title_short |
Changes in biomass and chemical composition during lecithotrophic larval development of the southern stone crab Paralomis granulosa |
title_full |
Changes in biomass and chemical composition during lecithotrophic larval development of the southern stone crab Paralomis granulosa |
title_fullStr |
Changes in biomass and chemical composition during lecithotrophic larval development of the southern stone crab Paralomis granulosa |
title_full_unstemmed |
Changes in biomass and chemical composition during lecithotrophic larval development of the southern stone crab Paralomis granulosa |
title_sort |
changes in biomass and chemical composition during lecithotrophic larval development of the southern stone crab paralomis granulosa |
publishDate |
2003 |
url |
http://hdl.handle.net/20.500.12110/paper_01718630_v257_n_p189_Calcagno https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_01718630_v257_n_p189_Calcagno_oai |
work_keys_str_mv |
AT calcagnoja changesinbiomassandchemicalcompositionduringlecithotrophiclarvaldevelopmentofthesouthernstonecrabparalomisgranulosa AT thatjes changesinbiomassandchemicalcompositionduringlecithotrophiclarvaldevelopmentofthesouthernstonecrabparalomisgranulosa AT angerk changesinbiomassandchemicalcompositionduringlecithotrophiclarvaldevelopmentofthesouthernstonecrabparalomisgranulosa AT lovrichga changesinbiomassandchemicalcompositionduringlecithotrophiclarvaldevelopmentofthesouthernstonecrabparalomisgranulosa AT kaffenbergera changesinbiomassandchemicalcompositionduringlecithotrophiclarvaldevelopmentofthesouthernstonecrabparalomisgranulosa |
_version_ |
1809356998395822080 |