Fast computation of a rational point of a variety over a finite field

We exhibit a probabilistic algorithm which computes a rational point of an absolutely irreducible variety over a finite field defined by a reduced regular sequence. Its time-space complexity is roughly quadratic in the logarithm of the cardinality of the field and a geometric invariant of the input...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cafure, A., Matera, G.
Formato: Artículo publishedVersion
Publicado: 2006
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00255718_v75_n256_p2049_Cafure
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00255718_v75_n256_p2049_Cafure_oai
Aporte de:
id I28-R145-paper_00255718_v75_n256_p2049_Cafure_oai
record_format dspace
spelling I28-R145-paper_00255718_v75_n256_p2049_Cafure_oai2024-08-16 Cafure, A. Matera, G. 2006 We exhibit a probabilistic algorithm which computes a rational point of an absolutely irreducible variety over a finite field defined by a reduced regular sequence. Its time-space complexity is roughly quadratic in the logarithm of the cardinality of the field and a geometric invariant of the input system. This invariant, called the degree, is bounded by the Bézout number of the system. Our algorithm works for fields of any characteristic, but requires the cardinality of the field to be greater than a quantity which is roughly the fourth power of the degree of the input variety. © 2006 American Mathematical Society. Fil:Cafure, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Matera, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_00255718_v75_n256_p2049_Cafure info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar Math. Comput. 2006;75(256):2049-2085 First Bertini theorem Geometric solutions Probabilistic algorithms Rational points Straight-line programs Varieties over finite fields Fast computation of a rational point of a variety over a finite field info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00255718_v75_n256_p2049_Cafure_oai
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-145
collection Repositorio Digital de la Universidad de Buenos Aires (UBA)
topic First Bertini theorem
Geometric solutions
Probabilistic algorithms
Rational points
Straight-line programs
Varieties over finite fields
spellingShingle First Bertini theorem
Geometric solutions
Probabilistic algorithms
Rational points
Straight-line programs
Varieties over finite fields
Cafure, A.
Matera, G.
Fast computation of a rational point of a variety over a finite field
topic_facet First Bertini theorem
Geometric solutions
Probabilistic algorithms
Rational points
Straight-line programs
Varieties over finite fields
description We exhibit a probabilistic algorithm which computes a rational point of an absolutely irreducible variety over a finite field defined by a reduced regular sequence. Its time-space complexity is roughly quadratic in the logarithm of the cardinality of the field and a geometric invariant of the input system. This invariant, called the degree, is bounded by the Bézout number of the system. Our algorithm works for fields of any characteristic, but requires the cardinality of the field to be greater than a quantity which is roughly the fourth power of the degree of the input variety. © 2006 American Mathematical Society.
format Artículo
Artículo
publishedVersion
author Cafure, A.
Matera, G.
author_facet Cafure, A.
Matera, G.
author_sort Cafure, A.
title Fast computation of a rational point of a variety over a finite field
title_short Fast computation of a rational point of a variety over a finite field
title_full Fast computation of a rational point of a variety over a finite field
title_fullStr Fast computation of a rational point of a variety over a finite field
title_full_unstemmed Fast computation of a rational point of a variety over a finite field
title_sort fast computation of a rational point of a variety over a finite field
publishDate 2006
url http://hdl.handle.net/20.500.12110/paper_00255718_v75_n256_p2049_Cafure
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00255718_v75_n256_p2049_Cafure_oai
work_keys_str_mv AT cafurea fastcomputationofarationalpointofavarietyoverafinitefield
AT materag fastcomputationofarationalpointofavarietyoverafinitefield
_version_ 1809357078477668352