Zero-nonzero and real-nonreal sign determination

We consider first the zero-nonzero determination problem, which consists in determining the list of zero-nonzero conditions realized by a finite list of polynomials on a finite set ZâŠCk with C an algebraic closed field. We describe an algorithm to solve the zero-nonzero determination problem and we...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Perrucci, D., Roy, M.-F.
Formato: Artículo publishedVersion
Publicado: 2013
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00243795_v439_n10_p3016_Perrucci
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00243795_v439_n10_p3016_Perrucci_oai
Aporte de:
id I28-R145-paper_00243795_v439_n10_p3016_Perrucci_oai
record_format dspace
spelling I28-R145-paper_00243795_v439_n10_p3016_Perrucci_oai2024-08-16 Perrucci, D. Roy, M.-F. 2013 We consider first the zero-nonzero determination problem, which consists in determining the list of zero-nonzero conditions realized by a finite list of polynomials on a finite set ZâŠCk with C an algebraic closed field. We describe an algorithm to solve the zero-nonzero determination problem and we perform its bit complexity analysis. This algorithm, which is in many ways an adaptation of the methods used to solve the more classical sign determination problem, presents also new ideas which can be used to improve sign determination. Then, we consider the real-nonreal sign determination problem, which deals with both the sign determination and the zero-nonzero determination problem. We describe an algorithm to solve the real-nonreal sign determination problem, we perform its bit complexity analysis and we discuss this problem in a parametric context. © 2013 Elsevier Inc. Fil:Perrucci, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_00243795_v439_n10_p3016_Perrucci info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar Linear Algebra Its Appl 2013;439(10):3016-3030 Complexity Polynomial equations and inequations systems Sign determination Bit complexity Complexity Finite set Polynomial equation Sign determination Polynomials Algorithms Zero-nonzero and real-nonreal sign determination info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00243795_v439_n10_p3016_Perrucci_oai
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-145
collection Repositorio Digital de la Universidad de Buenos Aires (UBA)
topic Complexity
Polynomial equations and inequations systems
Sign determination
Bit complexity
Complexity
Finite set
Polynomial equation
Sign determination
Polynomials
Algorithms
spellingShingle Complexity
Polynomial equations and inequations systems
Sign determination
Bit complexity
Complexity
Finite set
Polynomial equation
Sign determination
Polynomials
Algorithms
Perrucci, D.
Roy, M.-F.
Zero-nonzero and real-nonreal sign determination
topic_facet Complexity
Polynomial equations and inequations systems
Sign determination
Bit complexity
Complexity
Finite set
Polynomial equation
Sign determination
Polynomials
Algorithms
description We consider first the zero-nonzero determination problem, which consists in determining the list of zero-nonzero conditions realized by a finite list of polynomials on a finite set ZâŠCk with C an algebraic closed field. We describe an algorithm to solve the zero-nonzero determination problem and we perform its bit complexity analysis. This algorithm, which is in many ways an adaptation of the methods used to solve the more classical sign determination problem, presents also new ideas which can be used to improve sign determination. Then, we consider the real-nonreal sign determination problem, which deals with both the sign determination and the zero-nonzero determination problem. We describe an algorithm to solve the real-nonreal sign determination problem, we perform its bit complexity analysis and we discuss this problem in a parametric context. © 2013 Elsevier Inc.
format Artículo
Artículo
publishedVersion
author Perrucci, D.
Roy, M.-F.
author_facet Perrucci, D.
Roy, M.-F.
author_sort Perrucci, D.
title Zero-nonzero and real-nonreal sign determination
title_short Zero-nonzero and real-nonreal sign determination
title_full Zero-nonzero and real-nonreal sign determination
title_fullStr Zero-nonzero and real-nonreal sign determination
title_full_unstemmed Zero-nonzero and real-nonreal sign determination
title_sort zero-nonzero and real-nonreal sign determination
publishDate 2013
url http://hdl.handle.net/20.500.12110/paper_00243795_v439_n10_p3016_Perrucci
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00243795_v439_n10_p3016_Perrucci_oai
work_keys_str_mv AT perruccid zerononzeroandrealnonrealsigndetermination
AT roymf zerononzeroandrealnonrealsigndetermination
_version_ 1809357077341011968