j-Expansive matrix-valued functions and Darlington realization of transfer-scattering matrices

We obtain in this article theorems on linear fractional transformations of j-expansive matrix-valued functions wich provide a procedure to synthetize linear passive 2n-ports. In particular, these results permit us to solve the problem of Darlington realizations of transfer-scattering matrices of lin...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Cortina, E.
Formato: Artículo publishedVersion
Publicado: 1983
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_0022247X_v92_n2_p435_Cortina
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022247X_v92_n2_p435_Cortina_oai
Aporte de:
id I28-R145-paper_0022247X_v92_n2_p435_Cortina_oai
record_format dspace
spelling I28-R145-paper_0022247X_v92_n2_p435_Cortina_oai2024-08-16 Cortina, E. 1983 We obtain in this article theorems on linear fractional transformations of j-expansive matrix-valued functions wich provide a procedure to synthetize linear passive 2n-ports. In particular, these results permit us to solve the problem of Darlington realizations of transfer-scattering matrices of linear passive 2n-ports on the basis of the synthesis of transfer-scattering matrices of linear 4n-ports without losses. It is a pleasure to acknowledge our debt to the remarkable paper [4] by Arov. © 1983. Fil:Cortina, E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_0022247X_v92_n2_p435_Cortina info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar J. Math. Anal. Appl. 1983;92(2):435-444 MATHEMATICAL TRANSFORMATIONS ELECTRIC NETWORKS j-Expansive matrix-valued functions and Darlington realization of transfer-scattering matrices info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022247X_v92_n2_p435_Cortina_oai
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-145
collection Repositorio Digital de la Universidad de Buenos Aires (UBA)
topic MATHEMATICAL TRANSFORMATIONS
ELECTRIC NETWORKS
spellingShingle MATHEMATICAL TRANSFORMATIONS
ELECTRIC NETWORKS
Cortina, E.
j-Expansive matrix-valued functions and Darlington realization of transfer-scattering matrices
topic_facet MATHEMATICAL TRANSFORMATIONS
ELECTRIC NETWORKS
description We obtain in this article theorems on linear fractional transformations of j-expansive matrix-valued functions wich provide a procedure to synthetize linear passive 2n-ports. In particular, these results permit us to solve the problem of Darlington realizations of transfer-scattering matrices of linear passive 2n-ports on the basis of the synthesis of transfer-scattering matrices of linear 4n-ports without losses. It is a pleasure to acknowledge our debt to the remarkable paper [4] by Arov. © 1983.
format Artículo
Artículo
publishedVersion
author Cortina, E.
author_facet Cortina, E.
author_sort Cortina, E.
title j-Expansive matrix-valued functions and Darlington realization of transfer-scattering matrices
title_short j-Expansive matrix-valued functions and Darlington realization of transfer-scattering matrices
title_full j-Expansive matrix-valued functions and Darlington realization of transfer-scattering matrices
title_fullStr j-Expansive matrix-valued functions and Darlington realization of transfer-scattering matrices
title_full_unstemmed j-Expansive matrix-valued functions and Darlington realization of transfer-scattering matrices
title_sort j-expansive matrix-valued functions and darlington realization of transfer-scattering matrices
publishDate 1983
url http://hdl.handle.net/20.500.12110/paper_0022247X_v92_n2_p435_Cortina
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022247X_v92_n2_p435_Cortina_oai
work_keys_str_mv AT cortinae jexpansivematrixvaluedfunctionsanddarlingtonrealizationoftransferscatteringmatrices
_version_ 1809356882325798912