Orbits of non-elliptic disc automorphisms on H p

Motivated by the Invariant Subspace Problem, we describe explicitly the closed subspace H 2 generated by the limit points in the H 2 norm of the orbit of a thin Blaschke product B under composition operators C φ induced by non-elliptic automorphisms. This description exhibits a surprising connection...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Gallardo-Gutiérrez, E.A., Gorkin, P., Suárez, D.
Formato: Artículo publishedVersion
Publicado: 2012
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_0022247X_v388_n2_p1013_GallardoGutierrez
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022247X_v388_n2_p1013_GallardoGutierrez_oai
Aporte de:
id I28-R145-paper_0022247X_v388_n2_p1013_GallardoGutierrez_oai
record_format dspace
spelling I28-R145-paper_0022247X_v388_n2_p1013_GallardoGutierrez_oai2024-08-16 Gallardo-Gutiérrez, E.A. Gorkin, P. Suárez, D. 2012 Motivated by the Invariant Subspace Problem, we describe explicitly the closed subspace H 2 generated by the limit points in the H 2 norm of the orbit of a thin Blaschke product B under composition operators C φ induced by non-elliptic automorphisms. This description exhibits a surprising connection to model spaces. Finally, we give a constructive characterization of the C φ-eigenfunctions in H p for 1≤p≤∞. © 2011 Elsevier Inc. application/pdf http://hdl.handle.net/20.500.12110/paper_0022247X_v388_n2_p1013_GallardoGutierrez info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar J. Math. Anal. Appl. 2012;388(2):1013-1026 Blaschke products Eigenfunctions of composition operators Invariant subspaces Orbits of non-elliptic disc automorphisms on H p info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022247X_v388_n2_p1013_GallardoGutierrez_oai
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-145
collection Repositorio Digital de la Universidad de Buenos Aires (UBA)
topic Blaschke products
Eigenfunctions of composition operators
Invariant subspaces
spellingShingle Blaschke products
Eigenfunctions of composition operators
Invariant subspaces
Gallardo-Gutiérrez, E.A.
Gorkin, P.
Suárez, D.
Orbits of non-elliptic disc automorphisms on H p
topic_facet Blaschke products
Eigenfunctions of composition operators
Invariant subspaces
description Motivated by the Invariant Subspace Problem, we describe explicitly the closed subspace H 2 generated by the limit points in the H 2 norm of the orbit of a thin Blaschke product B under composition operators C φ induced by non-elliptic automorphisms. This description exhibits a surprising connection to model spaces. Finally, we give a constructive characterization of the C φ-eigenfunctions in H p for 1≤p≤∞. © 2011 Elsevier Inc.
format Artículo
Artículo
publishedVersion
author Gallardo-Gutiérrez, E.A.
Gorkin, P.
Suárez, D.
author_facet Gallardo-Gutiérrez, E.A.
Gorkin, P.
Suárez, D.
author_sort Gallardo-Gutiérrez, E.A.
title Orbits of non-elliptic disc automorphisms on H p
title_short Orbits of non-elliptic disc automorphisms on H p
title_full Orbits of non-elliptic disc automorphisms on H p
title_fullStr Orbits of non-elliptic disc automorphisms on H p
title_full_unstemmed Orbits of non-elliptic disc automorphisms on H p
title_sort orbits of non-elliptic disc automorphisms on h p
publishDate 2012
url http://hdl.handle.net/20.500.12110/paper_0022247X_v388_n2_p1013_GallardoGutierrez
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022247X_v388_n2_p1013_GallardoGutierrez_oai
work_keys_str_mv AT gallardogutierrezea orbitsofnonellipticdiscautomorphismsonhp
AT gorkinp orbitsofnonellipticdiscautomorphismsonhp
AT suarezd orbitsofnonellipticdiscautomorphismsonhp
_version_ 1809356790292283392