Improved Poincaré inequalities with weights

In this paper we prove that if Ω ∈ Rn is a bounded John domain, the following weighted Poincaré-type inequality holds:under(inf, a ∈ R) {norm of matrix} f (x) - a {norm of matrix}Lq (Ω, w1) ≤ C {norm of matrix} ∇ f (x) d (x)α {norm of matrix}Lp (Ω, w2) where f is a locally Lipschitz function on Ω, d...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Drelichman, I., Durán, R.G.
Formato: Artículo publishedVersion
Publicado: 2008
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_0022247X_v347_n1_p286_Drelichman
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022247X_v347_n1_p286_Drelichman_oai
Aporte de:
id I28-R145-paper_0022247X_v347_n1_p286_Drelichman_oai
record_format dspace
spelling I28-R145-paper_0022247X_v347_n1_p286_Drelichman_oai2024-08-16 Drelichman, I. Durán, R.G. 2008 In this paper we prove that if Ω ∈ Rn is a bounded John domain, the following weighted Poincaré-type inequality holds:under(inf, a ∈ R) {norm of matrix} f (x) - a {norm of matrix}Lq (Ω, w1) ≤ C {norm of matrix} ∇ f (x) d (x)α {norm of matrix}Lp (Ω, w2) where f is a locally Lipschitz function on Ω, d (x) denotes the distance of x to the boundary of Ω, the weights w1, w2 satisfy certain cube conditions, and α ∈ [0, 1] depends on p, q and n. This result generalizes previously known weighted inequalities, which can also be obtained with our approach. © 2008 Elsevier Inc. All rights reserved. Fil:Drelichman, I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Durán, R.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_0022247X_v347_n1_p286_Drelichman info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar J. Math. Anal. Appl. 2008;347(1):286-293 John domains Reverse doubling weights Weighted Poincaré inequality Weighted Sobolev inequality Improved Poincaré inequalities with weights info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022247X_v347_n1_p286_Drelichman_oai
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-145
collection Repositorio Digital de la Universidad de Buenos Aires (UBA)
topic John domains
Reverse doubling weights
Weighted Poincaré inequality
Weighted Sobolev inequality
spellingShingle John domains
Reverse doubling weights
Weighted Poincaré inequality
Weighted Sobolev inequality
Drelichman, I.
Durán, R.G.
Improved Poincaré inequalities with weights
topic_facet John domains
Reverse doubling weights
Weighted Poincaré inequality
Weighted Sobolev inequality
description In this paper we prove that if Ω ∈ Rn is a bounded John domain, the following weighted Poincaré-type inequality holds:under(inf, a ∈ R) {norm of matrix} f (x) - a {norm of matrix}Lq (Ω, w1) ≤ C {norm of matrix} ∇ f (x) d (x)α {norm of matrix}Lp (Ω, w2) where f is a locally Lipschitz function on Ω, d (x) denotes the distance of x to the boundary of Ω, the weights w1, w2 satisfy certain cube conditions, and α ∈ [0, 1] depends on p, q and n. This result generalizes previously known weighted inequalities, which can also be obtained with our approach. © 2008 Elsevier Inc. All rights reserved.
format Artículo
Artículo
publishedVersion
author Drelichman, I.
Durán, R.G.
author_facet Drelichman, I.
Durán, R.G.
author_sort Drelichman, I.
title Improved Poincaré inequalities with weights
title_short Improved Poincaré inequalities with weights
title_full Improved Poincaré inequalities with weights
title_fullStr Improved Poincaré inequalities with weights
title_full_unstemmed Improved Poincaré inequalities with weights
title_sort improved poincaré inequalities with weights
publishDate 2008
url http://hdl.handle.net/20.500.12110/paper_0022247X_v347_n1_p286_Drelichman
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022247X_v347_n1_p286_Drelichman_oai
work_keys_str_mv AT drelichmani improvedpoincareinequalitieswithweights
AT duranrg improvedpoincareinequalitieswithweights
_version_ 1809356881817239552