An optimization problem with volume constraint in Orlicz spaces
We consider the optimization problem of minimizing ∫Ω G (| ∇ u |) d x in the class of functions W1, G (Ω), with a constraint on the volume of {u > 0}. The conditions on the function G allow for a different behavior at 0 and at ∞. We consider a penalization problem, and we prove that for small...
Guardado en:
Autor principal: | |
---|---|
Formato: | Artículo publishedVersion |
Publicado: |
2008
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0022247X_v340_n2_p1407_Martinez https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022247X_v340_n2_p1407_Martinez_oai |
Aporte de: |
id |
I28-R145-paper_0022247X_v340_n2_p1407_Martinez_oai |
---|---|
record_format |
dspace |
spelling |
I28-R145-paper_0022247X_v340_n2_p1407_Martinez_oai2024-08-16 Martínez, S. 2008 We consider the optimization problem of minimizing ∫Ω G (| ∇ u |) d x in the class of functions W1, G (Ω), with a constraint on the volume of {u > 0}. The conditions on the function G allow for a different behavior at 0 and at ∞. We consider a penalization problem, and we prove that for small values of the penalization parameter, the constrained volume is attained. In this way we prove that every solution u is locally Lipschitz continuous and that the free boundary, ∂ {u > 0} ∩ Ω is smooth. © 2007 Elsevier Inc. All rights reserved. Fil:Martínez, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_0022247X_v340_n2_p1407_Martinez info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar J. Math. Anal. Appl. 2008;340(2):1407-1421 Free boundaries Optimal design problems Orlicz spaces An optimization problem with volume constraint in Orlicz spaces info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022247X_v340_n2_p1407_Martinez_oai |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-145 |
collection |
Repositorio Digital de la Universidad de Buenos Aires (UBA) |
topic |
Free boundaries Optimal design problems Orlicz spaces |
spellingShingle |
Free boundaries Optimal design problems Orlicz spaces Martínez, S. An optimization problem with volume constraint in Orlicz spaces |
topic_facet |
Free boundaries Optimal design problems Orlicz spaces |
description |
We consider the optimization problem of minimizing ∫Ω G (| ∇ u |) d x in the class of functions W1, G (Ω), with a constraint on the volume of {u > 0}. The conditions on the function G allow for a different behavior at 0 and at ∞. We consider a penalization problem, and we prove that for small values of the penalization parameter, the constrained volume is attained. In this way we prove that every solution u is locally Lipschitz continuous and that the free boundary, ∂ {u > 0} ∩ Ω is smooth. © 2007 Elsevier Inc. All rights reserved. |
format |
Artículo Artículo publishedVersion |
author |
Martínez, S. |
author_facet |
Martínez, S. |
author_sort |
Martínez, S. |
title |
An optimization problem with volume constraint in Orlicz spaces |
title_short |
An optimization problem with volume constraint in Orlicz spaces |
title_full |
An optimization problem with volume constraint in Orlicz spaces |
title_fullStr |
An optimization problem with volume constraint in Orlicz spaces |
title_full_unstemmed |
An optimization problem with volume constraint in Orlicz spaces |
title_sort |
optimization problem with volume constraint in orlicz spaces |
publishDate |
2008 |
url |
http://hdl.handle.net/20.500.12110/paper_0022247X_v340_n2_p1407_Martinez https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022247X_v340_n2_p1407_Martinez_oai |
work_keys_str_mv |
AT martinezs anoptimizationproblemwithvolumeconstraintinorliczspaces AT martinezs optimizationproblemwithvolumeconstraintinorliczspaces |
_version_ |
1809356976941957120 |