Integral representation of holomorphic functions on Banach spaces

In this paper we discuss the problem of integral representation of analytic functions over a complex Banach space E. We obtain, for a wide class of functions, integral representations of the form f (x) = ∫E′ eγ(x) f1 (γ) dW(γ) and f(x) = ∫E′ 1/1 - γ(x)/∥γ∥ f2(γ) dW(γ), where W is an abstract Wiener...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Pinasco, D., Zalduendo, I.
Formato: Artículo publishedVersion
Publicado: 2005
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_0022247X_v308_n1_p159_Pinasco
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022247X_v308_n1_p159_Pinasco_oai
Aporte de:
Descripción
Sumario:In this paper we discuss the problem of integral representation of analytic functions over a complex Banach space E. We obtain, for a wide class of functions, integral representations of the form f (x) = ∫E′ eγ(x) f1 (γ) dW(γ) and f(x) = ∫E′ 1/1 - γ(x)/∥γ∥ f2(γ) dW(γ), where W is an abstract Wiener measure on E′ and f1, f2 are transformations of f involving the covariance operator of W. © 2004 Elsevier Inc. All rights reserved.