Integral representation of holomorphic functions on Banach spaces
In this paper we discuss the problem of integral representation of analytic functions over a complex Banach space E. We obtain, for a wide class of functions, integral representations of the form f (x) = ∫E′ eγ(x) f1 (γ) dW(γ) and f(x) = ∫E′ 1/1 - γ(x)/∥γ∥ f2(γ) dW(γ), where W is an abstract Wiener...
Guardado en:
Autores principales: | , |
---|---|
Formato: | Artículo publishedVersion |
Publicado: |
2005
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0022247X_v308_n1_p159_Pinasco https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022247X_v308_n1_p159_Pinasco_oai |
Aporte de: |
id |
I28-R145-paper_0022247X_v308_n1_p159_Pinasco_oai |
---|---|
record_format |
dspace |
spelling |
I28-R145-paper_0022247X_v308_n1_p159_Pinasco_oai2024-08-16 Pinasco, D. Zalduendo, I. 2005 In this paper we discuss the problem of integral representation of analytic functions over a complex Banach space E. We obtain, for a wide class of functions, integral representations of the form f (x) = ∫E′ eγ(x) f1 (γ) dW(γ) and f(x) = ∫E′ 1/1 - γ(x)/∥γ∥ f2(γ) dW(γ), where W is an abstract Wiener measure on E′ and f1, f2 are transformations of f involving the covariance operator of W. © 2004 Elsevier Inc. All rights reserved. Fil:Pinasco, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Zalduendo, I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_0022247X_v308_n1_p159_Pinasco info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar J. Math. Anal. Appl. 2005;308(1):159-174 Cauchy integral formula Gaussian measures Integral representation Integral representation of holomorphic functions on Banach spaces info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022247X_v308_n1_p159_Pinasco_oai |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-145 |
collection |
Repositorio Digital de la Universidad de Buenos Aires (UBA) |
topic |
Cauchy integral formula Gaussian measures Integral representation |
spellingShingle |
Cauchy integral formula Gaussian measures Integral representation Pinasco, D. Zalduendo, I. Integral representation of holomorphic functions on Banach spaces |
topic_facet |
Cauchy integral formula Gaussian measures Integral representation |
description |
In this paper we discuss the problem of integral representation of analytic functions over a complex Banach space E. We obtain, for a wide class of functions, integral representations of the form f (x) = ∫E′ eγ(x) f1 (γ) dW(γ) and f(x) = ∫E′ 1/1 - γ(x)/∥γ∥ f2(γ) dW(γ), where W is an abstract Wiener measure on E′ and f1, f2 are transformations of f involving the covariance operator of W. © 2004 Elsevier Inc. All rights reserved. |
format |
Artículo Artículo publishedVersion |
author |
Pinasco, D. Zalduendo, I. |
author_facet |
Pinasco, D. Zalduendo, I. |
author_sort |
Pinasco, D. |
title |
Integral representation of holomorphic functions on Banach spaces |
title_short |
Integral representation of holomorphic functions on Banach spaces |
title_full |
Integral representation of holomorphic functions on Banach spaces |
title_fullStr |
Integral representation of holomorphic functions on Banach spaces |
title_full_unstemmed |
Integral representation of holomorphic functions on Banach spaces |
title_sort |
integral representation of holomorphic functions on banach spaces |
publishDate |
2005 |
url |
http://hdl.handle.net/20.500.12110/paper_0022247X_v308_n1_p159_Pinasco https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022247X_v308_n1_p159_Pinasco_oai |
work_keys_str_mv |
AT pinascod integralrepresentationofholomorphicfunctionsonbanachspaces AT zalduendoi integralrepresentationofholomorphicfunctionsonbanachspaces |
_version_ |
1809356788819034112 |