The implicit equation of a multigraded hypersurface
In this article we analyze the implicitization problem of the image of a rational map φ:X[U+21E2]Pn, with X a toric variety of dimension n-1 defined by its Cox ring R. Let I:=(f0, ..., fn) be n+1 homogeneous elements of R. We blow-up the base locus of φ, V(I), and we approximate the...
Guardado en:
Autor principal: | |
---|---|
Formato: | Artículo publishedVersion |
Publicado: |
2011
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00218693_v348_n1_p381_Botbol https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00218693_v348_n1_p381_Botbol_oai |
Aporte de: |
id |
I28-R145-paper_00218693_v348_n1_p381_Botbol_oai |
---|---|
record_format |
dspace |
spelling |
I28-R145-paper_00218693_v348_n1_p381_Botbol_oai2024-08-16 Botbol, N. 2011 In this article we analyze the implicitization problem of the image of a rational map φ:X[U+21E2]Pn, with X a toric variety of dimension n-1 defined by its Cox ring R. Let I:=(f0, ..., fn) be n+1 homogeneous elements of R. We blow-up the base locus of φ, V(I), and we approximate the Rees algebra ReesR(I) of this blow-up by the symmetric algebra SymR(I). We provide under suitable assumptions, resolutions Z for SymR(I) graded by the divisor group of X, Cl(X), such that the determinant of a graded strand, det((Z)μ), gives a multiple of the implicit equation, for suitable μ∈Cl(X). Indeed, we compute a region in Cl(X) which depends on the regularity of SymR(I) where to choose μ. We also give a geometrical interpretation of the possible other factors appearing in det((Z)μ). A very detailed description is given when X is a multiprojective space. © 2011 Elsevier Inc. application/pdf http://hdl.handle.net/20.500.12110/paper_00218693_v348_n1_p381_Botbol info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar J. Algebra 2011;348(1):381-401 Approximation complex Castelnuovo-Mumford regularity Elimination theory Graded algebra Graded ring Hypersurfaces Implicit equation Implicitization Koszul complex Multigraded algebra Multigraded ring Resultant Toric variety The implicit equation of a multigraded hypersurface info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00218693_v348_n1_p381_Botbol_oai |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-145 |
collection |
Repositorio Digital de la Universidad de Buenos Aires (UBA) |
topic |
Approximation complex Castelnuovo-Mumford regularity Elimination theory Graded algebra Graded ring Hypersurfaces Implicit equation Implicitization Koszul complex Multigraded algebra Multigraded ring Resultant Toric variety |
spellingShingle |
Approximation complex Castelnuovo-Mumford regularity Elimination theory Graded algebra Graded ring Hypersurfaces Implicit equation Implicitization Koszul complex Multigraded algebra Multigraded ring Resultant Toric variety Botbol, N. The implicit equation of a multigraded hypersurface |
topic_facet |
Approximation complex Castelnuovo-Mumford regularity Elimination theory Graded algebra Graded ring Hypersurfaces Implicit equation Implicitization Koszul complex Multigraded algebra Multigraded ring Resultant Toric variety |
description |
In this article we analyze the implicitization problem of the image of a rational map φ:X[U+21E2]Pn, with X a toric variety of dimension n-1 defined by its Cox ring R. Let I:=(f0, ..., fn) be n+1 homogeneous elements of R. We blow-up the base locus of φ, V(I), and we approximate the Rees algebra ReesR(I) of this blow-up by the symmetric algebra SymR(I). We provide under suitable assumptions, resolutions Z for SymR(I) graded by the divisor group of X, Cl(X), such that the determinant of a graded strand, det((Z)μ), gives a multiple of the implicit equation, for suitable μ∈Cl(X). Indeed, we compute a region in Cl(X) which depends on the regularity of SymR(I) where to choose μ. We also give a geometrical interpretation of the possible other factors appearing in det((Z)μ). A very detailed description is given when X is a multiprojective space. © 2011 Elsevier Inc. |
format |
Artículo Artículo publishedVersion |
author |
Botbol, N. |
author_facet |
Botbol, N. |
author_sort |
Botbol, N. |
title |
The implicit equation of a multigraded hypersurface |
title_short |
The implicit equation of a multigraded hypersurface |
title_full |
The implicit equation of a multigraded hypersurface |
title_fullStr |
The implicit equation of a multigraded hypersurface |
title_full_unstemmed |
The implicit equation of a multigraded hypersurface |
title_sort |
implicit equation of a multigraded hypersurface |
publishDate |
2011 |
url |
http://hdl.handle.net/20.500.12110/paper_00218693_v348_n1_p381_Botbol https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00218693_v348_n1_p381_Botbol_oai |
work_keys_str_mv |
AT botboln theimplicitequationofamultigradedhypersurface AT botboln implicitequationofamultigradedhypersurface |
_version_ |
1809356868138565632 |