De Rham and Infinitesimal Cohomology in Kapranov's Model for Noncommutative Algebraic Geometry
The title refers to the nilcommutative of NC-schemes introduced by M. Kapranov in 'Noncommutative Geometry Based on Commutator Expansions', J. Reine Angew. Math 505 (1998) 73-118. The latter are noncommutative nilpotent thickenings of commutative schemes. We also consider the parallel theo...
Guardado en:
Autor principal: | |
---|---|
Formato: | Artículo publishedVersion |
Publicado: |
2003
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0010437X_v136_n2_p171_Cortinas https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0010437X_v136_n2_p171_Cortinas_oai |
Aporte de: |
id |
I28-R145-paper_0010437X_v136_n2_p171_Cortinas_oai |
---|---|
record_format |
dspace |
spelling |
I28-R145-paper_0010437X_v136_n2_p171_Cortinas_oai2024-08-16 Cortiñas, G. 2003 The title refers to the nilcommutative of NC-schemes introduced by M. Kapranov in 'Noncommutative Geometry Based on Commutator Expansions', J. Reine Angew. Math 505 (1998) 73-118. The latter are noncommutative nilpotent thickenings of commutative schemes. We also consider the parallel theory of nil-Poisson of NP-schemes, which are nilpotent thickenings of commutative schemes in the category of Poisson schemes. We study several variants of de Rham cohomology for NC- and NP-schemes. The variants include nilcommutative and nil-Poisson versions of the de Rham complex as well as of the cohomology of the infinitesimal site introduced by Grothendieck in Crystals and the de Rham Cohomology of Schemes, Dix exposés sur la cohomologie des schémas, Masson, Paris (1968), pp. 306-358. It turns out that each of these noncommutative variants admits a kind of Hodge decomposition which allows one to express the cohomology groups of a noncommutative scheme Y as a sum of copies of the usual (de Rham, infinitesimal) cohomology groups of the underlying commutative scheme X (Theorems 6.1, 6.4, 6.7). As a byproduct we obtain new proofs for classical results of Grothendieck (Corollary 6.2) and of Feigin and Tsygan (Corollary 6.8) on the relation between de Rham and infinitesimal cohomology and between the latter and periodic cyclic homology. Fil:Cortiñas, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_0010437X_v136_n2_p171_Cortinas info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar Compos. Math. 2003;136(2):171-208 Commutator filtration Cyclic homology Grothendieck topology De Rham and Infinitesimal Cohomology in Kapranov's Model for Noncommutative Algebraic Geometry info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0010437X_v136_n2_p171_Cortinas_oai |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-145 |
collection |
Repositorio Digital de la Universidad de Buenos Aires (UBA) |
topic |
Commutator filtration Cyclic homology Grothendieck topology |
spellingShingle |
Commutator filtration Cyclic homology Grothendieck topology Cortiñas, G. De Rham and Infinitesimal Cohomology in Kapranov's Model for Noncommutative Algebraic Geometry |
topic_facet |
Commutator filtration Cyclic homology Grothendieck topology |
description |
The title refers to the nilcommutative of NC-schemes introduced by M. Kapranov in 'Noncommutative Geometry Based on Commutator Expansions', J. Reine Angew. Math 505 (1998) 73-118. The latter are noncommutative nilpotent thickenings of commutative schemes. We also consider the parallel theory of nil-Poisson of NP-schemes, which are nilpotent thickenings of commutative schemes in the category of Poisson schemes. We study several variants of de Rham cohomology for NC- and NP-schemes. The variants include nilcommutative and nil-Poisson versions of the de Rham complex as well as of the cohomology of the infinitesimal site introduced by Grothendieck in Crystals and the de Rham Cohomology of Schemes, Dix exposés sur la cohomologie des schémas, Masson, Paris (1968), pp. 306-358. It turns out that each of these noncommutative variants admits a kind of Hodge decomposition which allows one to express the cohomology groups of a noncommutative scheme Y as a sum of copies of the usual (de Rham, infinitesimal) cohomology groups of the underlying commutative scheme X (Theorems 6.1, 6.4, 6.7). As a byproduct we obtain new proofs for classical results of Grothendieck (Corollary 6.2) and of Feigin and Tsygan (Corollary 6.8) on the relation between de Rham and infinitesimal cohomology and between the latter and periodic cyclic homology. |
format |
Artículo Artículo publishedVersion |
author |
Cortiñas, G. |
author_facet |
Cortiñas, G. |
author_sort |
Cortiñas, G. |
title |
De Rham and Infinitesimal Cohomology in Kapranov's Model for Noncommutative Algebraic Geometry |
title_short |
De Rham and Infinitesimal Cohomology in Kapranov's Model for Noncommutative Algebraic Geometry |
title_full |
De Rham and Infinitesimal Cohomology in Kapranov's Model for Noncommutative Algebraic Geometry |
title_fullStr |
De Rham and Infinitesimal Cohomology in Kapranov's Model for Noncommutative Algebraic Geometry |
title_full_unstemmed |
De Rham and Infinitesimal Cohomology in Kapranov's Model for Noncommutative Algebraic Geometry |
title_sort |
de rham and infinitesimal cohomology in kapranov's model for noncommutative algebraic geometry |
publishDate |
2003 |
url |
http://hdl.handle.net/20.500.12110/paper_0010437X_v136_n2_p171_Cortinas https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0010437X_v136_n2_p171_Cortinas_oai |
work_keys_str_mv |
AT cortinasg derhamandinfinitesimalcohomologyinkapranovsmodelfornoncommutativealgebraicgeometry |
_version_ |
1809357052403777536 |