Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces

In this article we construct affine systems that provide a simultaneous atomic decomposition for a wide class of functional spaces including the Lebesgue spaces Lp(Rd), 1 < p < + ∞. The novelty and difficulty of this construction is that we allow for non-lattice translations.We prove that for...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cabrelli, C., Molter, U., Romero, J.L.
Formato: Artículo publishedVersion
Publicado: 2013
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00018708_v232_n1_p98_Cabrelli
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00018708_v232_n1_p98_Cabrelli_oai
Aporte de:
id I28-R145-paper_00018708_v232_n1_p98_Cabrelli_oai
record_format dspace
spelling I28-R145-paper_00018708_v232_n1_p98_Cabrelli_oai2024-08-16 Cabrelli, C. Molter, U. Romero, J.L. 2013 In this article we construct affine systems that provide a simultaneous atomic decomposition for a wide class of functional spaces including the Lebesgue spaces Lp(Rd), 1 < p < + ∞. The novelty and difficulty of this construction is that we allow for non-lattice translations.We prove that for an arbitrary expansive matrix A and any set Λ-satisfying a certain spreadness condition but otherwise irregular-there exists a smooth window whose translations along the elements of Λ and dilations by powers of A provide an atomic decomposition for the whole range of the anisotropic Triebel-Lizorkin spaces. The generating window can be either chosen to be bandlimited or to have compact support.To derive these results we start with a known general "painless" construction that has recently appeared in the literature. We show that this construction extends to Besov and Triebel-Lizorkin spaces by providing adequate dual systems. © 2012 Elsevier Ltd. Fil:Cabrelli, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Molter, U. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Romero, J.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_00018708_v232_n1_p98_Cabrelli info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar Adv. Math. 2013;232(1):98-120 Affine systems Anisotropic function spaces Besov spaces Non-uniform atomic decomposition Triebel-Lizorkin spaces Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00018708_v232_n1_p98_Cabrelli_oai
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-145
collection Repositorio Digital de la Universidad de Buenos Aires (UBA)
topic Affine systems
Anisotropic function spaces
Besov spaces
Non-uniform atomic decomposition
Triebel-Lizorkin spaces
spellingShingle Affine systems
Anisotropic function spaces
Besov spaces
Non-uniform atomic decomposition
Triebel-Lizorkin spaces
Cabrelli, C.
Molter, U.
Romero, J.L.
Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces
topic_facet Affine systems
Anisotropic function spaces
Besov spaces
Non-uniform atomic decomposition
Triebel-Lizorkin spaces
description In this article we construct affine systems that provide a simultaneous atomic decomposition for a wide class of functional spaces including the Lebesgue spaces Lp(Rd), 1 < p < + ∞. The novelty and difficulty of this construction is that we allow for non-lattice translations.We prove that for an arbitrary expansive matrix A and any set Λ-satisfying a certain spreadness condition but otherwise irregular-there exists a smooth window whose translations along the elements of Λ and dilations by powers of A provide an atomic decomposition for the whole range of the anisotropic Triebel-Lizorkin spaces. The generating window can be either chosen to be bandlimited or to have compact support.To derive these results we start with a known general "painless" construction that has recently appeared in the literature. We show that this construction extends to Besov and Triebel-Lizorkin spaces by providing adequate dual systems. © 2012 Elsevier Ltd.
format Artículo
Artículo
publishedVersion
author Cabrelli, C.
Molter, U.
Romero, J.L.
author_facet Cabrelli, C.
Molter, U.
Romero, J.L.
author_sort Cabrelli, C.
title Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces
title_short Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces
title_full Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces
title_fullStr Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces
title_full_unstemmed Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces
title_sort non-uniform painless decompositions for anisotropic besov and triebel-lizorkin spaces
publishDate 2013
url http://hdl.handle.net/20.500.12110/paper_00018708_v232_n1_p98_Cabrelli
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00018708_v232_n1_p98_Cabrelli_oai
work_keys_str_mv AT cabrellic nonuniformpainlessdecompositionsforanisotropicbesovandtriebellizorkinspaces
AT molteru nonuniformpainlessdecompositionsforanisotropicbesovandtriebellizorkinspaces
AT romerojl nonuniformpainlessdecompositionsforanisotropicbesovandtriebellizorkinspaces
_version_ 1809357037974323200