Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces
In this article we construct affine systems that provide a simultaneous atomic decomposition for a wide class of functional spaces including the Lebesgue spaces Lp(Rd), 1 < p < + ∞. The novelty and difficulty of this construction is that we allow for non-lattice translations.We prove that for...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | Artículo publishedVersion |
Publicado: |
2013
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00018708_v232_n1_p98_Cabrelli https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00018708_v232_n1_p98_Cabrelli_oai |
Aporte de: |
id |
I28-R145-paper_00018708_v232_n1_p98_Cabrelli_oai |
---|---|
record_format |
dspace |
spelling |
I28-R145-paper_00018708_v232_n1_p98_Cabrelli_oai2024-08-16 Cabrelli, C. Molter, U. Romero, J.L. 2013 In this article we construct affine systems that provide a simultaneous atomic decomposition for a wide class of functional spaces including the Lebesgue spaces Lp(Rd), 1 < p < + ∞. The novelty and difficulty of this construction is that we allow for non-lattice translations.We prove that for an arbitrary expansive matrix A and any set Λ-satisfying a certain spreadness condition but otherwise irregular-there exists a smooth window whose translations along the elements of Λ and dilations by powers of A provide an atomic decomposition for the whole range of the anisotropic Triebel-Lizorkin spaces. The generating window can be either chosen to be bandlimited or to have compact support.To derive these results we start with a known general "painless" construction that has recently appeared in the literature. We show that this construction extends to Besov and Triebel-Lizorkin spaces by providing adequate dual systems. © 2012 Elsevier Ltd. Fil:Cabrelli, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Molter, U. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Romero, J.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_00018708_v232_n1_p98_Cabrelli info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar Adv. Math. 2013;232(1):98-120 Affine systems Anisotropic function spaces Besov spaces Non-uniform atomic decomposition Triebel-Lizorkin spaces Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00018708_v232_n1_p98_Cabrelli_oai |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-145 |
collection |
Repositorio Digital de la Universidad de Buenos Aires (UBA) |
topic |
Affine systems Anisotropic function spaces Besov spaces Non-uniform atomic decomposition Triebel-Lizorkin spaces |
spellingShingle |
Affine systems Anisotropic function spaces Besov spaces Non-uniform atomic decomposition Triebel-Lizorkin spaces Cabrelli, C. Molter, U. Romero, J.L. Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces |
topic_facet |
Affine systems Anisotropic function spaces Besov spaces Non-uniform atomic decomposition Triebel-Lizorkin spaces |
description |
In this article we construct affine systems that provide a simultaneous atomic decomposition for a wide class of functional spaces including the Lebesgue spaces Lp(Rd), 1 < p < + ∞. The novelty and difficulty of this construction is that we allow for non-lattice translations.We prove that for an arbitrary expansive matrix A and any set Λ-satisfying a certain spreadness condition but otherwise irregular-there exists a smooth window whose translations along the elements of Λ and dilations by powers of A provide an atomic decomposition for the whole range of the anisotropic Triebel-Lizorkin spaces. The generating window can be either chosen to be bandlimited or to have compact support.To derive these results we start with a known general "painless" construction that has recently appeared in the literature. We show that this construction extends to Besov and Triebel-Lizorkin spaces by providing adequate dual systems. © 2012 Elsevier Ltd. |
format |
Artículo Artículo publishedVersion |
author |
Cabrelli, C. Molter, U. Romero, J.L. |
author_facet |
Cabrelli, C. Molter, U. Romero, J.L. |
author_sort |
Cabrelli, C. |
title |
Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces |
title_short |
Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces |
title_full |
Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces |
title_fullStr |
Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces |
title_full_unstemmed |
Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces |
title_sort |
non-uniform painless decompositions for anisotropic besov and triebel-lizorkin spaces |
publishDate |
2013 |
url |
http://hdl.handle.net/20.500.12110/paper_00018708_v232_n1_p98_Cabrelli https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00018708_v232_n1_p98_Cabrelli_oai |
work_keys_str_mv |
AT cabrellic nonuniformpainlessdecompositionsforanisotropicbesovandtriebellizorkinspaces AT molteru nonuniformpainlessdecompositionsforanisotropicbesovandtriebellizorkinspaces AT romerojl nonuniformpainlessdecompositionsforanisotropicbesovandtriebellizorkinspaces |
_version_ |
1809357037974323200 |